No Arabic abstract
While traditional corpus-level evaluation metrics for machine translation (MT) correlate well with fluency, they struggle to reflect adequacy. Model-based MT metrics trained on segment-level human judgments have emerged as an attractive replacement due to strong correlation results. These models, however, require potentially expensive re-training for new domains and languages. Furthermore, their decisions are inherently non-transparent and appear to reflect unwelcome biases. We explore the simple type-based classifier metric, MacroF1, and study its applicability to MT evaluation. We find that MacroF1 is competitive on direct assessment, and outperforms others in indicating downstream cross-lingual information retrieval task performance. Further, we show that MacroF1 can be used to effectively compare supervised and unsupervised neural machine translation, and reveal significant qualitative differences in the methods outputs.
Deep learning has come a long way and has enjoyed an unprecedented success. Despite high accuracy, however, deep models are brittle and are easily fooled by imperceptible adversarial perturbations. In contrast to common inference-time attacks, Backdoor (aka Trojan) attacks target the training phase of model construction, and are extremely difficult to combat since a) the model behaves normally on a pristine testing set and b) the augmented perturbations can be minute and may only affect few training samples. Here, I propose a new method to tell whether a model has been subject to a backdoor attack. The idea is to generate adversarial examples, targeted or untargeted, using conventional attacks such as FGSM and then feed them back to the classifier. By computing the statistics (here simply mean maps) of the images in different categories and comparing them with the statistics of a reference model, it is possible to visually locate the perturbed regions and unveil the attack.
Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of an early exit probability. We then introduce SkylineBuilder, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.
Neural entity typing models typically represent fine-grained entity types as vectors in a high-dimensional space, but such spaces are not well-suited to modeling these types complex interdependencies. We study the ability of box embeddings, which embed concepts as d-dimensional hyperrectangles, to capture hierarchies of types even when these relationships are not defined explicitly in the ontology. Our model represents both types and entity mentions as boxes. Each mention and its context are fed into a BERT-based model to embed that mention in our box space; essentially, this model leverages typological clues present in the surface text to hypothesize a type representation for the mention. Box containment can then be used to derive both the posterior probability of a mention exhibiting a given type and the conditional probability relations between types themselves. We compare our approach with a vector-based typing model and observe state-of-the-art performance on several entity typing benchmarks. In addition to competitive typing performance, our box-based model shows better performance in prediction consistency (predicting a supertype and a subtype together) and confidence (i.e., calibration), demonstrating that the box-based model captures the latent type hierarchies better than the vector-based model does.
Do state-of-the-art natural language understanding models care about word order - one of the most important characteristics of a sequence? Not always! We found 75% to 90% of the correct predictions of BERT-based classifiers, trained on many GLUE tasks, remain constant after input words are randomly shuffled. Despite BERT embeddings are famously contextual, the contribution of each individual word to downstream tasks is almost unchanged even after the words context is shuffled. BERT-based models are able to exploit superficial cues (e.g. the sentiment of keywords in sentiment analysis; or the word-wise similarity between sequence-pair inputs in natural language inference) to make correct decisions when tokens are arranged in random orders. Encouraging classifiers to capture word order information improves the performance on most GLUE tasks, SQuAD 2.0 and out-of-samples. Our work suggests that many GLUE tasks are not challenging machines to understand the meaning of a sentence.
End-to-end automatic speech recognition (ASR) systems are increasingly popular due to their relative architectural simplicity and competitive performance. However, even though the average accuracy of these systems may be high, the performance on rare content words often lags behind hybrid ASR systems. To address this problem, second-pass rescoring is often applied leveraging upon language modeling. In this paper, we propose a second-pass system with multi-task learning, utilizing semantic targets (such as intent and slot prediction) to improve speech recognition performance. We show that our rescoring model trained with these additional tasks outperforms the baseline rescoring model, trained with only the language modeling task, by 1.4% on a general test and by 2.6% on a rare word test set in terms of word-error-rate relative (WERR). Our best ASR system with multi-task LM shows 4.6% WERR deduction compared with RNN Transducer only ASR baseline for rare words recognition.