Do you want to publish a course? Click here

Distributed estimation from relative measurements of heterogeneous and uncertain quality

113   0   0.0 ( 0 )
 Added by Paolo Frasca
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper studies the problem of estimation from relative measurements in a graph, in which a vector indexed over the nodes has to be reconstructed from pairwise measurements of differences between its components associated to nodes connected by an edge. In order to model heterogeneity and uncertainty of the measurements, we assume them to be affected by additive noise distributed according to a Gaussian mixture. In this original setup, we formulate the problem of computing the Maximum-Likelihood (ML) estimates and we design two novel algorithms, based on Least Squares regression and Expectation-Maximization (EM). The first algorithm (LS- EM) is centralized and performs the estimation from relative measurements, the soft classification of the measurements, and the estimation of the noise parameters. The second algorithm (Distributed LS-EM) is distributed and performs estimation and soft classification of the measurements, but requires the knowledge of the noise parameters. We provide rigorous proofs of convergence of both algorithms and we present numerical experiments to evaluate and compare their performance with classical solutions. The experiments show the robustness of the proposed methods against different kinds of noise and, for the Distributed LS-EM, against errors in the knowledge of noise parameters.



rate research

Read More

Uncertain wiretap channels are introduced. Their zero-error secrecy capacity is defined. If the sensor-estimator channel is perfect, it is also calculated. Further properties are discussed. The problem of estimating a dynamical system with nonstochastic disturbances is studied where the sensor is connected to the estimator and an eavesdropper via an uncertain wiretap channel. The estimator should obtain a uniformly bounded estimation error whereas the eavesdroppers error should tend to infinity. It is proved that the system can be estimated securely if the zero-error capacity of the sensor-estimator channel is strictly larger than the logarithm of the systems unstable pole and the zero-error secrecy capacity of the uncertain wiretap channel is positive.
This paper proposes a fully distributed robust state-estimation (D-RBSE) method that is applicable to multi-area power systems with nonlinear measurements. We extend the recently introduced bilinear formulation of state estimation problems to a robust model. A distributed bilinear state-estimation procedure is developed. In both linear stages, the state estimation problem in each area is solved locally, with minimal data exchange with its neighbors. The intermediate nonlinear transformation can be performed by all areas in parallel without any need of inter-regional communication. This algorithm does not require a central coordinator and can compress bad measurements by introducing a robust state estimation model. Numerical tests on IEEE 14-bus and 118-bus benchmark systems demonstrate the validity of the method.
We consider the problem of estimating the unobserved amount of photovoltaic (PV) generation and demand in a power distribution network starting from measurements of the aggregated power flow at the point of common coupling (PCC) and local global horizontal irradiance (GHI). The estimation principle relies on modeling the PV generation as a function of the measured GHI, enabling the identification of PV production patterns in the aggregated power flow measurements. Four estimation algorithms are proposed: the first assumes that variability in the aggregated PV generation is given by variations of PV generation, the next two use a model of the demand to improve estimation performance, and the fourth assumes that, in a certain frequency range, the aggregated power flow is dominated by PV generation dynamics. These algorithms leverage irradiance transposition models to explore several azimuth/tilt configurations and explain PV generation patterns from multiple plants with non-uniform installation characteristics. Their estimation performance is compared and validated with measurements from a real-life setup including 4 houses with rooftop PV installations and battery systems for PV self-consumption.
Optimal power flow (OPF) is an important technique for power systems to achieve optimal operation while satisfying multiple constraints. The traditional OPF are mostly centralized methods which are executed in the centralized control center. This paper introduces a totally Distributed DC Optimal Power Flow (DDCOPF) method for future power systems which have more and more distributed generators. The proposed method is based on the Distributed Economic Dispatch (DED) method and the Distributed State Estimation (DSE) method. In this proposed scheme, the DED method is used to achieve the optimal power dispatch with the lowest cost, and the DSE method provides power flow information of the power system to the proposed DDCOPF algorithm. In the proposed method, the Auto-Regressive (AR) model is used to predict the load variation so that the proposed algorithm can prevent overflow. In addition, a method called constraint algorithm is developed to correct the results of DED with the proposed correction algorithm and penalty term so that the constraints for the power system will not be violated. Different from existing research, the proposed method is completely distributed without need for any centralized facility.
The paper considers a problem of detecting and mitigating biasing attacks on networks of state observers targeting cooperative state estimation algorithms. The problem is cast within the recently developed framework of distributed estimation utilizing the vector dissipativity approach. The paper shows that a network of distributed observers can be endowed with an additional attack detection layer capable of detecting biasing attacks and correcting their effect on estimates produced by the network. An example is provided to illustrate the performance of the proposed distributed attack detector.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا