No Arabic abstract
Uncertain wiretap channels are introduced. Their zero-error secrecy capacity is defined. If the sensor-estimator channel is perfect, it is also calculated. Further properties are discussed. The problem of estimating a dynamical system with nonstochastic disturbances is studied where the sensor is connected to the estimator and an eavesdropper via an uncertain wiretap channel. The estimator should obtain a uniformly bounded estimation error whereas the eavesdroppers error should tend to infinity. It is proved that the system can be estimated securely if the zero-error capacity of the sensor-estimator channel is strictly larger than the logarithm of the systems unstable pole and the zero-error secrecy capacity of the uncertain wiretap channel is positive.
This paper considers the problem of secure coding design for a type II wiretap channel, where the main channel is noiseless and the eavesdropper channel is a general binary-input symmetric-output memoryless channel. The proposed secure error-correcting code has a nested code structure. Two secure nested coding schemes are studied for a type II Gaussian wiretap channel. The nesting is based on cosets of a good code sequence for the first scheme and on cosets of the dual of a good code sequence for the second scheme. In each case, the corresponding achievable rate-equivocation pair is derived based on the threshold behavior of good code sequences. The two secure coding schemes together establish an achievable rate-equivocation region, which almost covers the secrecy capacity-equivocation region in this case study. The proposed secure coding scheme is extended to a type II binary symmetric wiretap channel. A new achievable perfect secrecy rate, which improves upon the previously reported result by Thangaraj et al., is derived for this channel.
In the context of event-triggered control, the timing of the triggering events carries information about the state of the system that can be used for stabilization. At each triggering event, not only can information be transmitted by the message content (data payload) but also by its timing. We demonstrate this in the context of stabilization of a laboratory-scale inverted pendulum around its equilibrium point over a digital communication channel with bounded unknown delay. Our event-triggering control strategy encodes timing information by transmitting in a state-dependent fashion and can achieve stabilization using a data payload transmission rate lower than what the data-rate theorem prescribes for classical periodic control policies that do not exploit timing information. Through experimental results, we show that as the delay in the communication channel increases, a higher data payload transmission rate is required to fulfill the proposed event-triggering policy requirements. This confirms the theoretical intuition that a larger delay brings a larger uncertainty about the value of the state at the controller, as less timing information is carried in the communication. In addition, our results also provide a novel encoding-decoding scheme to achieve input-to-state practically stability (ISpS) for nonlinear continuous-time systems under appropriate assumptions.
In this paper, we focus on the physical layer security for a K-user multiple-input-single-output (MISO) wiretap channel in the presence of a malicious eavesdropper, where we propose several interference exploitation (IE) precoding schemes for different types of the eavesdropper. Specifically, in the case where a common eavesdropper decodes the signal directly and Eves full channel state information (CSI) is available at the transmitter, we show that the required transmit power can be further reduced by re-designing the `destructive region of the constellations for symbol-level precoding and re-formulating the power minimization problem. We further study the SINR balancing problems with the derived `complete destructive region with full, statistical and no Eves CSI, respectively, and show that the SINR balancing problem becomes non-convex with statistical or no Eves CSI. On the other hand, in the presence of a smart eavesdropper using maximal likelihood (ML) detection, the security cannot be guaranteed with all the existing approaches. To this end, we further propose a random jamming scheme (RJS) and a random precoding scheme (RPS), respectively. To solve the introduced convex/non-convex problems in an efficient manner, we propose an iterative algorithm for the convex ones based on the Karush-Kuhn-Tucker (KKT) conditions, and deal with the non-convex ones by resorting to Taylor expansions. Simulation results show that all proposed schemes outperform the existing works in secrecy performance, and that the proposed algorithm improves the computation efficiency significantly.
We in this paper introduce an advanced eavesdropper that aims to paralyze the artificial-noise-aided secure communications. We consider the M-1-2 Gaussian MISO wiretap channel, which consists of a M-antenna transmitter, a single-antenna receiver, and a two-antenna eavesdropper. This type of eavesdropper, by adopting an optimal Grassmann manifold (OGM) filtering structure, can reduce the maximum achievable secrecy rate (MASR) to be zero by using only two receive antennas, regardless of the number of antennas at the transmitter. Specifically, the eavesdropper exploits linear filters to serially recover the legitimate information symbols and intends to find the optimal filter that minimizes the meansquare error (MSE) in estimating the symbols. During the process, a convex semidefinite programming (SDP) problem with constraints on the filter matrix can be formulated and solved. Interestingly, the resulted optimal filters constitute a complex Grassmann manifold on the matrix space. Based on the filters, a novel expression of MASR is derived and further verified to be zero under the noiseless environment. Besides this, an achievable variable region (AVR) that induces zero MASR is presented analytically in the noisy case. Numerical results are provided to illustrate the huge disaster in the respect of secrecy rate.
This paper studies the problem of estimation from relative measurements in a graph, in which a vector indexed over the nodes has to be reconstructed from pairwise measurements of differences between its components associated to nodes connected by an edge. In order to model heterogeneity and uncertainty of the measurements, we assume them to be affected by additive noise distributed according to a Gaussian mixture. In this original setup, we formulate the problem of computing the Maximum-Likelihood (ML) estimates and we design two novel algorithms, based on Least Squares regression and Expectation-Maximization (EM). The first algorithm (LS- EM) is centralized and performs the estimation from relative measurements, the soft classification of the measurements, and the estimation of the noise parameters. The second algorithm (Distributed LS-EM) is distributed and performs estimation and soft classification of the measurements, but requires the knowledge of the noise parameters. We provide rigorous proofs of convergence of both algorithms and we present numerical experiments to evaluate and compare their performance with classical solutions. The experiments show the robustness of the proposed methods against different kinds of noise and, for the Distributed LS-EM, against errors in the knowledge of noise parameters.