No Arabic abstract
Within the framework of generalized noncontextuality, we introduce a general technique for systematically deriving noncontextuality inequalities for any experiment involving finitely many preparations and finitely many measurements, each of which has a finite number of outcomes. Given any fixed sets of operational equivalences among the preparations and among the measurements as input, the algorithm returns a set of noncontextuality inequalities whose satisfaction is necessary and sufficient for a set of operational data to admit of a noncontextual model. Additionally, we show that the space of noncontextual data tables always defines a polytope. Finally, we provide a computationally efficient means for testing whether any set of numerical data admits of a noncontextual model, with respect to any fixed operational equivalences. Together, these techniques provide complete methods for characterizing arbitrary noncontextuality scenarios, both in theory and in practice. Because a quantum prepare-and-measure experiment admits of a noncontextual model if and only if it admits of a positive quasiprobability representation, our techniques also determine the necessary and sufficient conditions for the existence of such a representation.
Contextuality has been identified as a potential resource responsible for the quantum advantage in several tasks. It is then necessary to develop a resource-theoretic framework for contextuality, both in its standard and generalized forms. Here we provide a formal resource-theoretic approach for generalized contextuality based on a physically motivated set of free operations with an explicit parametrisation. Then, using an efficient linear programming characterization for the contextual set of prepared-and-measured statistics, we adapt known resource quantifiers for contextuality and nonlocality to obtain natural monotones for generalized contextuality in arbitrary prepare-and-measure experiments.
A new theory-independent noncontextuality inequality is presented [Phys. Rev. Lett. 115, 110403 (2015)] based on Kochen-Specker (KS) set without imposing the assumption of determinism. By proposing novel noncontextuality inequalities, we show that such result can be generalized from KS set to the noncontextuality inequalities not only for state-independent but also for state-dependent scenario. The YO-13 ray and $n$ cycle ray are considered as examples.
Starting from arbitrary sets of quantum states and measurements, referred to as the prepare-and-measure scenario, a generalized Spekkens non-contextual ontological model representation of the quantum statistics associated to the prepare-and-measure scenario is constructed. The generalization involves the new notion of a reduced space which is non-trivial for non-tomographically complete scenarios. A new mathematical criterion, called unit separability, is formulated as the relevant classicality criterion -- the name is inspired by the usual notion of quantum state separability. Using this criterion, we derive a new upper bound on the cardinality of the ontic space. Then, we recast the unit separability criterion as a (possibly infinite) set of linear constraints, from which two separate converging hierarchies of algorithmic tests to witness non-classicality or certify classicality are obtained. We relate the complexity of these algorithmic tests to that of a class of vertex enumeration problems. Finally, we reformulate our results in the framework of generalized probabilistic theories and discuss the implications for simplex-embeddability in such theories.
Self-testing represents the strongest form of certification of a quantum system. Here we investigate theoretically and experimentally the question of self-testing non-projective quantum measurements. That is, how can one certify, from observed data only, that an uncharacterised measurement device implements a desired non-projective positive-operator-valued-measure (POVM). We consider a prepare-and-measure scenario with a bound on the Hilbert space dimension, which we argue is natural for this problem since any measurement can be made projective by artificially increasing the Hilbert space dimension. We develop methods for (i) robustly self-testing extremal qubit POVMs (which feature either three or four outcomes), and (ii) certify that an uncharacterised qubit measurement is non-projective, or even a genuine four-outcome POVM. Our methods are robust to noise and thus applicable in practice, as we demonstrate in a photonic experiment. Specifically, we show that our experimental data implies that the implemented measurements are very close to certain ideal three and four outcome qubit POVMs, and hence non-projective. In the latter case, the data certifies a genuine four-outcome qubit POVM. Our results open interesting perspective for strong `black-box certification of quantum devices.
Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states, i.e. their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality inequalities. The Yu-Oh 13 ray noncontextuality inequality can be re-derived and generalized as an instance of our antidistinguishability method. For some sets of states, the antidistinguishability method gives tighter bounds on noncontextual models than just considering orthogonality, and the Hadamard states provide an example of this. We also derive noncontextuality inequalities based on mutually unbiased bases and symmetric informationally complete POVMs. Antidistinguishability based inequalities were initially discovered as overlap bounds for the reality of the quantum state. Our main contribution here is to show that they are also noncontextuality inequalities.