No Arabic abstract
Noncontextuality inequalities are usually derived from the distinguishability properties of quantum states, i.e. their orthogonality. Here, we show that antidistinguishability can also be used to derive noncontextuality inequalities. The Yu-Oh 13 ray noncontextuality inequality can be re-derived and generalized as an instance of our antidistinguishability method. For some sets of states, the antidistinguishability method gives tighter bounds on noncontextual models than just considering orthogonality, and the Hadamard states provide an example of this. We also derive noncontextuality inequalities based on mutually unbiased bases and symmetric informationally complete POVMs. Antidistinguishability based inequalities were initially discovered as overlap bounds for the reality of the quantum state. Our main contribution here is to show that they are also noncontextuality inequalities.
A new theory-independent noncontextuality inequality is presented [Phys. Rev. Lett. 115, 110403 (2015)] based on Kochen-Specker (KS) set without imposing the assumption of determinism. By proposing novel noncontextuality inequalities, we show that such result can be generalized from KS set to the noncontextuality inequalities not only for state-independent but also for state-dependent scenario. The YO-13 ray and $n$ cycle ray are considered as examples.
Measurement scenarios containing events with relations of exclusivity represented by pentagons, heptagons, nonagons, etc., or their complements are the only ones in which quantum probabilities cannot be described classically. Interestingly, quantum theory predicts that the maximum values for any of these graphs cannot be achieved in Bell inequality scenarios. With the exception of the pentagon, this prediction remained experimentally unexplored. Here we test the quantum maxima for the heptagon and the complement of the heptagon using three- and five-dimensional quantum states, respectively. In both cases, we adopt two different encodings: linear transverse momentum and orbital angular momentum of single photons. Our results exclude maximally noncontextual hidden-variable theories and are in good agreement with the maxima predicted by quantum theory.
Within the framework of generalized noncontextuality, we introduce a general technique for systematically deriving noncontextuality inequalities for any experiment involving finitely many preparations and finitely many measurements, each of which has a finite number of outcomes. Given any fixed sets of operational equivalences among the preparations and among the measurements as input, the algorithm returns a set of noncontextuality inequalities whose satisfaction is necessary and sufficient for a set of operational data to admit of a noncontextual model. Additionally, we show that the space of noncontextual data tables always defines a polytope. Finally, we provide a computationally efficient means for testing whether any set of numerical data admits of a noncontextual model, with respect to any fixed operational equivalences. Together, these techniques provide complete methods for characterizing arbitrary noncontextuality scenarios, both in theory and in practice. Because a quantum prepare-and-measure experiment admits of a noncontextual model if and only if it admits of a positive quasiprobability representation, our techniques also determine the necessary and sufficient conditions for the existence of such a representation.
Quantum Darwinism proposes that the proliferation of redundant information plays a major role in the emergence of objectivity out of the quantum world. Is this kind of objectivity necessarily classical? We show that if one takes Spekkens notion of noncontextuality as the notion of classicality and the approach of Brand~{a}o, Piani and Horodecki to quantum Darwinism, the answer to the above question is `yes, if the environment encodes sufficiently well the proliferated information. Moreover, we propose a threshold on this encoding, above which one can unambiguously say that classical objectivity has emerged under quantum Darwinism.
We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.