No Arabic abstract
The tailoring of the physical properties of semiconductor nanomaterials by strain has been gaining increasing attention over the last years for a wide range of applications such as electronics, optoelectronics and photonics. The ability to introduce deliberate strain fields with controlled magnitude and in a reversible manner is essential for fundamental studies of novel materials and may lead to the realization of advanced multi-functional devices. A prominent approach consists in the integration of active nanomaterials, in thin epitaxial films or embedded within carrier nanomembranes, onto Pb(Mg1/3Nb2/3)O3-PbTiO3-based piezoelectric actuators, which convert electrical signals into mechanical deformation (strain). In this review, we mainly focus on recent advances in strain-tunable properties of self-assembled InAs quantum dots embedded in semiconductor nanomembranes and photonic structures. Additionally, recent works on other nanomaterials like rare-earth and metal-ion doped thin films, graphene and MoS2 or WSe2 semiconductor two-dimensional materials are also reviewed. For the sake of completeness, a comprehensive comparison between different procedures employed throughout the literature to fabricate such hybrid piezoelectric-semiconductor devices is presented. Very recently, a novel class of micro-machined piezoelectric actuators have been demonstrated for a full control of in-plane stress fields in nanomembranes, which enables producing energy-tunable sources of polarization-entangled photons in arbitrary quantum dots. Future research directions and prospects are discussed.
Actuation of thin polymeric films via electron irradiation is a promising avenue to realize devices based on strain engineered two dimensional (2D) materials. Complex strain profiles demand a deep understanding of the mechanics of the polymeric layer under electron irradiation; in this article we report a detailed investigation on electron-induced stress on poly-methyl-methacrylate (PMMA) thin film material. After an assessment of stress values using a method based on dielectric cantilevers, we directly investigate the lateral shrinkage of PMMA patterns on epitaxial graphene, which reveals a universal behavior, independent of the electron acceleration energy. By knowing the stress-strain curve, we finally estimate an effective Youngs modulus of PMMA on top of graphene which is a relevant parameter for PMMA based electron-beam lithography and strain engineering applications.
The sensitive correlation between optical parameters and strain in Mo$S_2$ results in a totally different approach to tune the optical properties. Usually, an external source of strain is employed to monitor the optical and vibrational properties of a material. It is always challenging to have a precise control over the strain and its consequences on material properties. Here, we report the presence of a compressive strain in Mo$S_2$ crystalline powder and nanosheets obtained via the process of ball-milling and probe sonication. The diffraction peaks in the X-ray diffraction pattern shift to higher 2$theta$ value implying a compressive strain that increases with the processing time. The absorption spectra, photoluminescence and Raman modes are blue-shifted w.r.t the bulk unprocessed sample. The observed blue-shift is attributed to the presence of compressive strain in the samples. Whereas in thin nano-sheets of Mo$S_2$, it is very likely that both quantum confinement as well as strain result in the observed blue-shift. These results indicate that by optimizing the processing conditions and/or time, a strain of desired amount and hence tunable shift in optical properties of material can be achieved.
We present a theoretical study of Ge-core/Si-shell nanocrystals in a wide bandgap matrix and compare the results with experimental data obtained from the samples prepared by co-sputtering. The empirical tight-binding technique allows us to account for the electronic structure under strain on the atomistic level. We find that a Si shell as thick as 1 monolayer is enough to reduce the radiative recombination rate as a result of valley $L - X$ cross-over. Thin Si shell leads to a dramatic reduction of the optical bandgap from visible to near-infrared range, which is promising for photovoltaics and photodetector applications. Our detailed analysis of the structure of the confined electron and hole states in real and reciprocal spaces indicates that the type-II heterostructure is not yet achieved for Si shells with the thickness below 0.8 nm, despite some earlier theoretical predictions. The energy levels of holes are affected by the Si shell stronger than the electron states, even though holes are completely confined to the Ge core. This occurs probably due to a strong influence of strain on the band offsets.
In this paper strain transfer efficiencies from single crystalline piezoelectric lead magnesium niobate-lead titanate (PMN-PT) substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the soft SU8 bonding in comparison to the hard bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows to explain this unexpected result with the presence of complex interface structures between the different layers.
We experimentally demonstrate an ultrafast method for preparing spin states of donor-bound electrons in GaAs with single laser pulses. Each polarization state of a preparation pulse has a direct mapping onto a spin state, with bijective correspondence between the Poincar{e}-sphere (for photon polarization) and Bloch-sphere (for spin) state representations. The preparation is governed by a stimulated Raman process and occurs orders of magnitude faster than the spontaneous emission and spin dephasing. Similar dynamics governs our ultrafast optical Kerr detection of the spin coherence, thus getting access to spin state tomography. Experiments with double preparation pulses show an additive character for the preparation method. Utilization of these phenomena is of value for quantum information schemes.