Do you want to publish a course? Click here

Full-Duplex Transceiver for Future Cellular Network: A Smart Antenna Approach

83   0   0.0 ( 0 )
 Added by Chandan Pradhan
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a transceiver architecture for full-duplex (FD) eNodeB (eNB) and FD user equipment (UE) transceiver. For FD communication,.i.e., simultaneous in-band uplink and downlink operation, same subcarriers can be allocated to UE in both uplink and downlink. Hence, contrary to traditional LTE, we propose using single-carrier frequency division multiple accesses (SC-FDMA) for downlink along with the conventional method of using it for uplink. The use of multiple antennas at eNB and singular value decomposition (SVD) in the downlink allows multiple users (MU) to operate on the same set of ubcarriers. In the uplink, successive interference cancellation with optimal ordering (SSIC-OO) algorithm is used to decouple signals of UEs operating in the same set of subcarriers. A smart antenna approach is adopted which prevents interference, in downlink of a UE, from uplink signals of other UEs sharing same subcarriers. The approach includes using multiple antennas at UEs to form directed beams towards eNode and nulls towards other UEs. The proposed architecture results in significant improvement of the overall spectrum efficiency per cell of the cellular network.

rate research

Read More

This paper consider a new secure communication scene where a full-duplex transmitter (Alan) need to transmit confidential information to a half-duplex receiver (Bob), with a silent eavesdropper (Eve) that tries to eavesdrop the confidential information. For realizing secure communication between Alan and Bob, a novel two phases communication scheme is proposed: in Phase 1, Alan and Bob send artificial noises (AN) simultaneously, while in Phase 2, Alan superimposes the AN received in Phase 1 with its confidential signal and sends the mixed signalto Bob. Since the mixed AN could degrade the SINR (Signal to Interference and Noise Ratio) of Eve, but does not affect the SINR of Bob, a secrecy capacity can be achieved. We also derive the conditions that the secrecy capacity of the proposed scheme exists, and analyze the secrecy outage probability under Rayleigh fading channel. Numerical results show that the secrecy capacity is about two times higher than without AN, even though in the proposed scheme half of the time is used to transmit ANs, and the outage probability is about five times lower than that without AN.
Security is a critical issue in full duplex (FD) communication systems due to the broadcast nature of wireless channels. In this paper, joint design of information and artificial noise beamforming vectors is proposed for the FD simultaneous wireless information and power transferring (FD-SWIPT) systems with loopback self-interference cancellation. To guarantee high security and energy harvesting performance of the FD-SWIPT system, the proposed design is formulated as a secrecy rate maximization problem under energy transfer rate constraints. Although the secrecy rate maximization problem is non-convex, we solve it via semidefinite relaxation and a two-dimensional search. We prove the optimality of our proposed algorithm and demonstrate its performance via simulations.
The growing demand for high-speed data, quality of service (QoS) assurance and energy efficiency has triggered the evolution of 4G LTE-A networks to 5G and beyond. Interference is still a major performance bottleneck. This paper studies the application of physical-layer network coding (PNC), a technique that exploits interference, in heterogeneous cellular networks. In particular, we propose a rate-maximising relay selection algorithm for a single cell with multiple relays based on the decode-and-forward strategy. With nodes transmitting at different powers, the proposed algorithm adapts the resource allocation according to the differing link rates and we prove theoretically that the optimisation problem is log-concave. The proposed technique is shown to perform significantly better than the widely studied selection-cooperation technique. We then undertake an experimental study on a software radio platform of the decoding performance of PNC with unbalanced SNRs in the multiple-access transmissions. This problem is inherent in cellular networks and it is shown that with channel coding and decoders based on multiuser detection and successive interference cancellation, the performance is better with power imbalance. This paper paves the way for further research in multi-cell PNC, resource allocation, and the implementation of PNC with higher-order modulations and advanced coding techniques.
157 - Sarabjot Singh 2019
Wireless traffic attributable to machine learning (ML) inference workloads is increasing with the proliferation of applications and smart wireless devices leveraging ML inference. Owing to limited compute capabilities at these edge devices, achieving high inference accuracy often requires coordination with a remote compute node or cloud over the wireless cellular network. The accuracy of this distributed inference is, thus, impacted by the communication rate and reliability offered by the cellular network. In this paper, an analytical framework is proposed to characterize inference accuracy as a function of cellular network design. Using the developed framework, it is shown that cellular network should be provisioned with a minimum density of access points (APs) to guarantee a target inference accuracy, and the inference accuracy achievable at asymptotically high AP density is limited by the air-interface bandwidth. Furthermore, the minimum accuracy required of edge inference to deliver a target inference accuracy is shown to be inversely proportional to the density of APs and the bandwidth.
In this paper, we study a X-duplex relay system with one source, one amplify-and-forward (AF) relay and one destination, where the relay is equipped with a shared antenna and two radio frequency (RF) chains used for transmission or reception. X-duplex relay can adaptively configure the connection between its RF chains and antenna to operate in either HD or FD mode, according to the instantaneous channel conditions. We first derive the distribution of the signal to interference plus noise ratio (SINR), based on which we then analyze the outage probability, average symbol error rate (SER), and average sum rate. We also investigate the X-duplex relay with power allocation and derive the lower bound and upper bound of the corresponding outage probability. Both analytical and simulated results show that the X-duplex relay achieves a better performance over pure FD and HD schemes in terms of SER, outage probability and average sum rate, and the performance floor caused by the residual self interference can be eliminated using flexible RF chain configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا