Do you want to publish a course? Click here

Coupling effect of topological states and Chern insulators in two-dimensional triangular lattices

92   0   0.0 ( 0 )
 Added by Zhongqin Yang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate topological states of two-dimensional (2D) triangular lattices with multi-orbitals. Tight-binding model calculations of a 2D triangular lattice based on $emph{p}_{x}$ and emph{p}_{y} orbitals exhibit very interesting doubly degenerate energy points at different positions ($Gamma$ and K/K$^{prime}$) in momentum space, with quadratic non-Dirac and linear Dirac band dispersions, respectively. Counterintuitively, the system shows a global topologically trivial rather than nontrivial state with consideration of spin-orbit coupling due to the destructive interference effect between the topological states at the $Gamma$ and K/K$^{prime}$ points. The topologically nontrivial state can emerge by introducing another set of triangular lattices to the system (bitriangular lattices) due to the breakdown of the interference effect. With first-principles calculations, we predict an intrinsic Chern insulating behavior (quantum anomalous Hall effect) in a family of 2D triangular lattice metal-organic framework of Co(C$_{21}$N$_{3}$H$_{15}$) (TPyB-Co) from this scheme. Our results provide a different path and theoretical guidance for the search for and design of new 2D topological quantum materials.



rate research

Read More

We theoretically propose a gigantic orbital Edelstein effect in topological insulators and interpret the results in terms of topological surface currents. We numerically calculate the orbital Edelstein effect for a model of a three-dimensional Chern insulator as an example. Furthermore, we calculate the orbital Edelstein effect as a surface quantity using a surface Hamiltonian of a topological insulator, and numerically show that it well describes the results by direct numerical calculation. We find that the orbital Edelstein effect depends on the local crystal structure of the surface, which shows that the orbital Edelstein effect cannot be defined as a bulk quantity. We propose that Chern insulators and Z_2 topological insulators can be a platform with a large orbital Edelstein effect because current flows only along the surface. We also propose candidate topological insulators for this effect. As a result, the orbital magnetization as a response to the current is much larger in topological insulators than that in metals by many orders of magnitude.
Quantum materials that host a flat band, such as pseudospin-1 lattices and magic-angle twisted bilayer graphene, can exhibit drastically new physical phenomena including unconventional superconductivity, orbital ferromagnetism, and Chern insulating behaviors. We report a surprising class of electronic in-gap edge states in pseudospin-1 materials without the conventional need of band-inversion topological phase transitions or introducing magnetism via an external magnetic type of interactions. In particular, we find that, in two-dimensional gapped (insulating) Dirac systems of massive spin-1 quasiparticles, in-gap edge modes can emerge through only an {em electrostatic potential} applied to a finite domain. Associated with these unconventional edge modes are spontaneous formation of pronounced domain-wall spin textures, which exhibit the feature of out-of-plane spin-angular momentum locking on both sides of the domain boundary and are quite robust against boundary deformations and impurities despite a lack of an explicit topological origin. The in-gap modes are formally three-component evanescent wave solutions, akin to the Jackiw-Rebbi type of bound states. Such modes belong to a distinct class due to the following physical reasons: three-component spinor wave function, unusual boundary conditions, and a shifted flat band induced by the external scalar potential. Not only is the finding of fundamental importance, but it also paves the way for generating highly controllable in-gap edge states with emergent spin textures using the traditional semiconductor gate technology. Results are validated using analytic calculations of a continuum Dirac-Weyl model and tight-binding simulations of realistic materials through characterizations of local density of state spectra and resonant tunneling conductance.
Dislocations are ubiquitous in three-dimensional solid-state materials. The interplay of such real space topology with the emergent band topology defined in reciprocal space gives rise to gapless helical modes bound to the line defects. This is known as bulk-dislocation correspondence, in contrast to the conventional bulk-boundary correspondence featuring topological states at boundaries. However, to date rare compelling experimental evidences are presented for this intriguing topological observable, owing to the presence of various challenges in solid-state systems. Here, using a three-dimensional acoustic topological insulator with precisely controllable dislocations, we report an unambiguous experimental evidence for the long-desired bulk-dislocation correspondence, through directly measuring the gapless dispersion of the one-dimensional topological dislocation modes. Remarkably, as revealed in our further experiments, the pseudospin-locked dislocation modes can be unidirectionally guided in an arbitrarily-shaped dislocation path. The peculiar topological dislocation transport, expected in a variety of classical wave systems, can provide unprecedented controllability over wave propagations.
We report a proximity-driven large anomalous Hall effect in all-telluride heterostructures consisting of ferromagnetic insulator Cr2Ge2Te6 and topological insulator (Bi,Sb)2Te3. Despite small magnetization in the (Bi,Sb)2Te3 layer, the anomalous Hall conductivity reaches a large value of 0.2e2/h in accord with a ferromagnetic response of the Cr2Ge2Te6. The results show that the exchange coupling between the surface state of the topological insulator and the proximitized Cr2Ge2Te6 layer is effective and strong enough to open the sizable exchange gap in the surface state.
Our understanding of topological insulators is based on an underlying crystalline lattice where the local electronic degrees of freedom at different sites hybridize with each other in ways that produce nontrivial band topology, and the search for material systems to realize such phases have been strongly influenced by this. Here we theoretically demonstrate topological insulators in systems with a random distribution of sites in space, i. e., a random lattice. This is achieved by constructing hopping models on random lattices whose ground states possess nontrivial topological nature (characterized e. g., by Bott indices) that manifests as quantized conductances in systems with a boundary. By tuning parameters such as the density of sites (for a given range of fermion hopping), we can achieve transitions from trivial to topological phases. We discuss interesting features of these transitions. In two spatial dimensions, we show this for all five symmetry classes (A, AII, D, DIII and C) that are known to host nontrivial topology in crystalline systems. We expect similar physics to be realizable in any dimension and provide an explicit example of a $Z_2$ topological insulator on a random lattice in three spatial dimensions. Our study not only provides a deeper understanding of the topological phases of non-interacting fermions, but also suggests new directions in the pursuit of the laboratory realization of topological quantum matter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا