Do you want to publish a course? Click here

Large Anomalous Hall Effect in Topological Insulators with Proximitized Ferromagnetic Insulators

127   0   0.0 ( 0 )
 Added by Masataka Mogi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a proximity-driven large anomalous Hall effect in all-telluride heterostructures consisting of ferromagnetic insulator Cr2Ge2Te6 and topological insulator (Bi,Sb)2Te3. Despite small magnetization in the (Bi,Sb)2Te3 layer, the anomalous Hall conductivity reaches a large value of 0.2e2/h in accord with a ferromagnetic response of the Cr2Ge2Te6. The results show that the exchange coupling between the surface state of the topological insulator and the proximitized Cr2Ge2Te6 layer is effective and strong enough to open the sizable exchange gap in the surface state.



rate research

Read More

CrSb is an attractive material for room-temperature antiferromagnetic spintronic applications because of its high N{e}el temperature $sim$700 K and semi-metallic character. We study the magnetic properties of CrSb bilayers on few-layer topological insulator thin films using emph{ab initio} density functional theory. We find that the intrinsic parts of the total anomalous Hall conductivities of the thin films are non-zero, and approximately quantized. The N{e}el temperature of CrSb bilayers on few-layer topological insulator thin films is found to be approximately two times larger than that of an isolated CrSb thin film. Due to the low Fermi level density of states of CrSb, Hall quantization might be achievable by introducing disorder. CrSb bilayers on topological insulator surfaces are therefore attractive candidates for high-temperature quantum anomalous Hall effects.
Instability of quantum anomalous Hall (QAH) effect has been studied as function of electric current and temperature in ferromagnetic topological insulator thin films. We find that a characteristic current for the breakdown of the QAH effect is roughly proportional to the Hall-bar width, indicating that Hall electric field is relevant to the breakdown. We also find that electron transport is dominated by variable range hopping (VRH) at low temperatures. Combining the current and temperature dependences of the conductivity in the VRH regime, the localization length of the QAH state is evaluated to be about 5 $mu$m. The long localization length suggests a marginally insulating nature of the QAH state due to a large number of in-gap states.
252 - Rui Yu , Wei Zhang , H. J. Zhang 2010
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
As one of paradigmatic phenomena in condensed matter physics, the quantum anomalous Hall effect (QAHE) in stoichiometric Chern insulators has drawn great interest for years. By using model Hamiltonian analysis and first-principle calculations, we establish a topological phase diagram and map on it with different two-dimensional configurations, which is taken from the recently-grown magnetic topological insulators MnBi4Te7 and MnBi6Te10 with superlattice-like stacking patterns. These configurations manifest various topological phases, including quantum spin Hall effect with and without time-reversal symmetry, as well as QAHE. We then provide design principles to trigger QAHE by tuning experimentally accessible knobs, such as slab thickness and magnetization. Our work reveals that superlattice-like magnetic topological insulators with tunable exchange interaction serve as an ideal platform to realize the long-sought QAHE in pristine compounds, paving a new avenue within the area of topological materials.
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tuning the Fermi levels of both top and bottom surfaces across the Dirac point by electrostatic gating. This opened the window for studying the spin-nondegenerate Dirac physics peculiar to TIs. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi$_{2-x}$Sb$_{x}$Te$_{3}$ thin films, in which both top and bottom surfaces are gated. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from back-scattering. The key signature of the field-induced anisotropy is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point which is explained theoretically using a self-consistent T-matrix approximation. The observed PHE provides a new tool to analyze and manipulate the topological protection of the TI surface in future experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا