Do you want to publish a course? Click here

Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks

96   0   0.0 ( 0 )
 Added by Ziwei Liu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Fashion landmarks are functional key points defined on clothes, such as corners of neckline, hemline, and cuff. They have been recently introduced as an effective visual representation for fashion image understanding. However, detecting fashion landmarks are challenging due to background clutters, human poses, and scales. To remove the above variations, previous works usually assumed bounding boxes of clothes are provided in training and test as additional annotations, which are expensive to obtain and inapplicable in practice. This work addresses unconstrained fashion landmark detection, where clothing bounding boxes are not provided in both training and test. To this end, we present a novel Deep LAndmark Network (DLAN), where bounding boxes and landmarks are jointly estimated and trained iteratively in an end-to-end manner. DLAN contains two dedicated modules, including a Selective Dilated Convolution for handling scale discrepancies, and a Hierarchical Recurrent Spatial Transformer for handling background clutters. To evaluate DLAN, we present a large-scale fashion landmark dataset, namely Unconstrained Landmark Database (ULD), consisting of 30K images. Statistics show that ULD is more challenging than existing datasets in terms of image scales, background clutters, and human poses. Extensive experiments demonstrate the effectiveness of DLAN over the state-of-the-art methods. DLAN also exhibits excellent generalization across different clothing categories and modalities, making it extremely suitable for real-world fashion analysis.



rate research

Read More

Detecting dense landmarks for diverse clothes, as a fundamental technique for clothes analysis, has attracted increasing research attention due to its huge application potential. However, due to the lack of modeling underlying semantic layout constraints among landmarks, prior works often detect ambiguous and structure-inconsistent landmarks of multiple overlapped clothes in one person. In this paper, we propose to seamlessly enforce structural layout relationships among landmarks on the intermediate representations via multiple stacked layout-graph reasoning layers. We define the layout-graph as a hierarchical structure including a root node, body-part nodes (e.g. upper body, lower body), coarse clothes-part nodes (e.g. collar, sleeve) and leaf landmark nodes (e.g. left-collar, right-collar). Each Layout-Graph Reasoning(LGR) layer aims to map feature representations into structural graph nodes via a Map-to-Node module, performs reasoning over structural graph nodes to achieve global layout coherency via a layout-graph reasoning module, and then maps graph nodes back to enhance feature representations via a Node-to-Map module. The layout-graph reasoning module integrates a graph clustering operation to generate representations of intermediate nodes (bottom-up inference) and then a graph deconvolution operation (top-down inference) over the whole graph. Extensive experiments on two public fashion landmark datasets demonstrate the superiority of our model. Furthermore, to advance the fine-grained fashion landmark research for supporting more comprehensive clothes generation and attribute recognition, we contribute the first Fine-grained Fashion Landmark Dataset (FFLD) containing 200k images annotated with at most 32 key-points for 13 clothes types.
Research on automated, image based identification of clothing categories and fashion landmarks has recently gained significant interest due to its potential impact on areas such as robotic clothing manipulation, automated clothes sorting and recycling, and online shopping. Several public and annotated fashion datasets have been created to facilitate research advances in this direction. In this work, we make the first step towards leveraging the data and techniques developed for fashion image analysis in vision-based robotic clothing manipulation tasks. We focus on techniques that can generalize from large-scale fashion datasets to less structured, small datasets collected in a robotic lab. Specifically, we propose training data augmentation methods such as elastic warping, and model adjustments such as rotation invariant convolutions to make the model generalize better. Our experiments demonstrate that our approach outperforms stateof-the art models with respect to clothing category classification and fashion landmark detection when tested on previously unseen datasets. Furthermore, we present experimental results on a new dataset composed of images where a robot holds different garments, collected in our lab.
In this paper, we tackle the problem of online road network extraction from sparse 3D point clouds. Our method is inspired by how an annotator builds a lane graph, by first identifying how many lanes there are and then drawing each one in turn. We develop a hierarchical recurrent network that attends to initial regions of a lane boundary and traces them out completely by outputting a structured polyline. We also propose a novel differentiable loss function that measures the deviation of the edges of the ground truth polylines and their predictions. This is more suitable than distances on vertices, as there exists many ways to draw equivalent polylines. We demonstrate the effectiveness of our method on a 90 km stretch of highway, and show that we can recover the right topology 92% of the time.
Facial action unit (AU) detection in the wild is a challenging problem, due to the unconstrained variability in facial appearances and the lack of accurate annotations. Most existing methods depend on either impractical labor-intensive labeling or inaccurate pseudo labels. In this paper, we propose an end-to-end unconstrained facial AU detection framework based on domain adaptation, which transfers accurate AU labels from a constrained source domain to an unconstrained target domain by exploiting labels of AU-related facial landmarks. Specifically, we map a source image with label and a target image without label into a latent feature domain by combining source landmark-related feature with target landmark-free feature. Due to the combination of source AU-related information and target AU-free information, the latent feature domain with transferred source label can be learned by maximizing the target-domain AU detection performance. Moreover, we introduce a novel landmark adversarial loss to disentangle the landmark-free feature from the landmark-related feature by treating the adversarial learning as a multi-player minimax game. Our framework can also be naturally extended for use with target-domain pseudo AU labels. Extensive experiments show that our method soundly outperforms lower-bounds and upper-bounds of the basic model, as well as state-of-the-art approaches on the challenging in-the-wild benchmarks. The code is available at https://github.com/ZhiwenShao/ADLD.
Image landmark detection aims to automatically identify the locations of predefined fiducial points. Despite recent success in this field, higher-ordered structural modeling to capture implicit or explicit relationships among anatomical landmarks has not been adequately exploited. In this work, we present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical (e.g., hand, pelvis) landmark detection. The proposed method constructs graph signals leveraging both local image features and global shape features. The adaptive graph topology naturally explores and lands on task-specific structures which are learned end-to-end with two Graph Convolutional Networks (GCNs). Extensive experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis). Quantitative results comparing with the previous state-of-the-art approaches across all studied datasets indicating the superior performance in both robustness and accuracy. Qualitative visualizations of the learned graph topologies demonstrate a physically plausible connectivity laying behind the landmarks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا