Do you want to publish a course? Click here

Structured Landmark Detection via Topology-Adapting Deep Graph Learning

407   0   0.0 ( 0 )
 Added by Weijian Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Image landmark detection aims to automatically identify the locations of predefined fiducial points. Despite recent success in this field, higher-ordered structural modeling to capture implicit or explicit relationships among anatomical landmarks has not been adequately exploited. In this work, we present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical (e.g., hand, pelvis) landmark detection. The proposed method constructs graph signals leveraging both local image features and global shape features. The adaptive graph topology naturally explores and lands on task-specific structures which are learned end-to-end with two Graph Convolutional Networks (GCNs). Extensive experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis). Quantitative results comparing with the previous state-of-the-art approaches across all studied datasets indicating the superior performance in both robustness and accuracy. Qualitative visualizations of the learned graph topologies demonstrate a physically plausible connectivity laying behind the landmarks.



rate research

Read More

Learning the distance metric between pairs of examples is of great importance for visual recognition, especially for person re-identification (Re-Id). Recently, the contrastive and triplet loss are proposed to enhance the discriminative power of the deeply learned features, and have achieved remarkable success. As can be seen, either the contrastive or triplet loss is just one special case of the Euclidean distance relationships among these training samples. Therefore, we propose a structured graph Laplacian embedding algorithm, which can formulate all these structured distance relationships into the graph Laplacian form. The proposed method can take full advantages of the structured distance relationships among these training samples, with the constructed complete graph. Besides, this formulation makes our method easy-to-implement and super-effective. When embedding the proposed algorithm with the softmax loss for the CNN training, our method can obtain much more robust and discriminative deep features with inter-personal dispersion and intra-personal compactness, which is essential to person Re-Id. We illustrate the effectiveness of our proposed method on top of three popular networks, namely AlexNet, DGDNet and ResNet50, on recent four widely used Re-Id benchmark datasets. Our proposed method achieves state-of-the-art performances.
We propose a deep autoencoder with graph topology inference and filtering to achieve compact representations of unorganized 3D point clouds in an unsupervised manner. Many previous works discretize 3D points to voxels and then use lattice-based methods to process and learn 3D spatial information; however, this leads to inevitable discretization errors. In this work, we handle raw 3D points without such compromise. The proposed networks follow the autoencoder framework with a focus on designing the decoder. The encoder adopts similar architectures as in PointNet. The decoder involves three novel modules. The folding module folds a canonical 2D lattice to the underlying surface of a 3D point cloud, achieving coarse reconstruction; the graph-topology-inference module learns a graph topology to represent pairwise relationships between 3D points, pushing the latent code to preserve both coordinates and pairwise relationships of points in 3D point clouds; and the graph-filtering module couples the above two modules, refining the coarse reconstruction through a learnt graph topology to obtain the final reconstruction. The proposed decoder leverages a learnable graph topology to push the codeword to preserve representative features and further improve the unsupervised-learning performance. We further provide theoretical analyses of the proposed architecture. In the experiments, we validate the proposed networks in three tasks, including 3D point cloud reconstruction, visualization, and transfer classification. The experimental results show that (1) the proposed networks outperform the state-of-the-art methods in various tasks; (2) a graph topology can be inferred as auxiliary information without specific supervision on graph topology inference; and (3) graph filtering refines the reconstruction, leading to better performances.
Colonoscopy is a standard imaging tool for visualizing the entire gastrointestinal (GI) tract of patients to capture lesion areas. However, it takes the clinicians excessive time to review a large number of images extracted from colonoscopy videos. Thus, automatic detection of biological anatomical landmarks within the colon is highly demanded, which can help reduce the burden of clinicians by providing guidance information for the locations of lesion areas. In this article, we propose a novel deep learning-based approach to detect biological anatomical landmarks in colonoscopy videos. First, raw colonoscopy video sequences are pre-processed to reject interference frames. Second, a ResNet-101 based network is used to detect three biological anatomical landmarks separately to obtain the intermediate detection results. Third, to achieve more reliable localization of the landmark periods within the whole video period, we propose to post-process the intermediate detection results by identifying the incorrectly predicted frames based on their temporal distribution and reassigning them back to the correct class. Finally, the average detection accuracy reaches 99.75%. Meanwhile, the average IoU of 0.91 shows a high degree of similarity between our predicted landmark periods and ground truth. The experimental results demonstrate that our proposed model is capable of accurately detecting and localizing biological anatomical landmarks from colonoscopy videos.
Detecting dense landmarks for diverse clothes, as a fundamental technique for clothes analysis, has attracted increasing research attention due to its huge application potential. However, due to the lack of modeling underlying semantic layout constraints among landmarks, prior works often detect ambiguous and structure-inconsistent landmarks of multiple overlapped clothes in one person. In this paper, we propose to seamlessly enforce structural layout relationships among landmarks on the intermediate representations via multiple stacked layout-graph reasoning layers. We define the layout-graph as a hierarchical structure including a root node, body-part nodes (e.g. upper body, lower body), coarse clothes-part nodes (e.g. collar, sleeve) and leaf landmark nodes (e.g. left-collar, right-collar). Each Layout-Graph Reasoning(LGR) layer aims to map feature representations into structural graph nodes via a Map-to-Node module, performs reasoning over structural graph nodes to achieve global layout coherency via a layout-graph reasoning module, and then maps graph nodes back to enhance feature representations via a Node-to-Map module. The layout-graph reasoning module integrates a graph clustering operation to generate representations of intermediate nodes (bottom-up inference) and then a graph deconvolution operation (top-down inference) over the whole graph. Extensive experiments on two public fashion landmark datasets demonstrate the superiority of our model. Furthermore, to advance the fine-grained fashion landmark research for supporting more comprehensive clothes generation and attribute recognition, we contribute the first Fine-grained Fashion Landmark Dataset (FFLD) containing 200k images annotated with at most 32 key-points for 13 clothes types.
Homotopy model is an excellent tool exploited by diverse research works in the field of machine learning. However, its flexibility is limited due to lack of adaptiveness, i.e., manual fixing or tuning the appropriate homotopy coefficients. To address the problem above, we propose a novel adaptive homotopy framework (AH) in which the Maclaurin duality is employed, such that the homotopy parameters can be adaptively obtained. Accordingly, the proposed AH can be widely utilized to enhance the homotopy-based algorithm. In particular, in this paper, we apply AH to contrastive learning (AHCL) such that it can be effectively transferred from weak-supervised learning (given label priori) to unsupervised learning, where soft labels of contrastive learning are directly and adaptively learned. Accordingly, AHCL has the adaptive ability to extract deep features without any sort of prior information. Consequently, the affinity matrix formulated by the related adaptive labels can be constructed as the deep Laplacian graph that incorporates the topology of deep representations for the inputs. Eventually, extensive experiments on benchmark datasets validate the superiority of our method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا