Do you want to publish a course? Click here

Electrodynamic properties of an artificial heterostructured superconducting cuprate

278   0   0.0 ( 0 )
 Added by Andrea Perucchi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform infrared conductivity measurements on a series of CaCuO$_2$/SrTiO$_3$ heterostructures made by the insulating cuprate CaCuO$_2$ (CCO) and the insulating perovkite SrTiO$_3$ (STO). We estimate the carrier density of various heterostructures, with different level of hole doping from the integral of the optical conductivity and we measure the corresponding degree of correlation by estimating the ratio between the Drude weight and the integral of the infrared spectrum. The analysis demonstrates a large degree of correlation, which increases as the doping is reduced. The experimental results can be reproduced by Dynamical Mean-Field Theory calculations which strongly support the role of correlations in the CCO/STO heterostructures and their similarities with the most common cuprate superconductors. Our results suggest that cuprate superconductors can be looked at as natural superlattices, where the properties of the CuO$_2$ conducting planes and charge reservoir blocks can be completely disentangled.



rate research

Read More

Although cuprate superconductors have been intensively studied for the past decades, there is no consensus regarding the microscopic origin of their superconductivity. In this work, we measure the low-energy electrodynamic response of slightly underdoped and overdoped La$_{2-x}$Ce$_x$CuO$_4$ thin films using time-domain terahertz (THz) spectroscopy to determine the temperature and field dependence of the superfluid spectral weight. We show that the temperature dependence obeys the relation textit{n$_s$} $propto$ $1-(T/T_c)^2$, typical for dirty limit BCS-like $d$-wave superconductors. Furthermore, the magnetic field dependence was found to follow a sublinear $sqrt{B}$ form, which supports predictions based on a $d$-wave symmetry for the superconducting gap. These observations imply that the superconducting order in these electron-doped cuprates can be well described in terms of a disordered BCS $d$-wave formalism.
We have studied the electrodynamic response of strongly disordered superconducting TiN films using microwave resonators, where the disordered superconductor is the resonating element in a high- quality superconducting environment of NbTiN. We describe the response assuming an effective pair-breaking mechanism modifying the density of states, and compare this to local tunnelling spectra obtained using scanning tunnelling spectroscopy. For the least disordered film (kFl = 8.7, Rs = 13 {Omega}), we find good agreement, whereas for the most disordered film (kFl = 0.82, Rs = 4.3 k{Omega}), there is a strong discrepancy, which signals the breakdown of a model based on uniform properties.
We consider adiabatic superconducting cells operating as an artificial neuron and synapse of a multilayer perceptron (MLP). Their compact circuits contain just one and two Josephson junctions, respectively. While the signal is represented as magnetic flux, the proposed cells are inherently nonlinear and close-to-linear magnetic flux transformers. The neuron is capable of providing a one-shot calculation of sigmoid and hyperbolic tangent activation functions most commonly used in MLP. The synapse features by both positive and negative signal transfer coefficients in the range ~ (-0.5,0.5). We briefly discuss implementation issues and further steps toward multilayer adiabatic superconducting artificial neural network which promises to be a compact and the most energy-efficient implementation of MLP.
322 - Heshan Yu , Jie Yuan , Beiyi Zhu 2017
The techniques of growing films with different parameters in single process make it possible to build up a sample library promptly. In this work, with a precisely controlled moving mask, we synthetized superconducting La2-xCexCuO4+/-{delta} combinatorial films on one SrTiO3 substrate with the doping levels from x = 0.1 to 0.19. The monotonicity in doping along the designed direction is verified by micro-region x-ray diffraction and electric transport measurements. More importantly, by means of numerical simulation, the real change of doping levels is in accordance with a linear gradient variation of doping levels in the La2-xCexCuO4+/-{delta} combinatorial films. Our results indicate that it is promising to accurately investigate materials with critical composition by combinatorial film technique.
We report the superconducting properties of single crystals of the intermetallic perovskite-related compound BaBi$_{3}$. The superconducting transition temperature ($T_{c}=5.82$~K) was obtained from heat capacity measurements. Using the measured values for the critical fields $H_{c1}, H_{c2}$, and the specific heat $C$, we estimate the thermodynamic critical field $H_{c}$(0), coherence length $xi$(0), Debye temperature $Theta _{D}$ and coupling constant $lambda _{ep}$. $Delta C/gamma T_{c}$ and $lambda _{ep}$ suggest that BaBi$_{3}$ is a moderately coupled superconductor and $gamma $ suggests an enhanced density of states at the Fermi level. Electronic band structure calculations show a complex Fermi surface and a moderately high DOS at the Fermi level. Further analysis of the electronic specific heat shows that the superconducting properties are dominated by s-wave gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا