No Arabic abstract
Although cuprate superconductors have been intensively studied for the past decades, there is no consensus regarding the microscopic origin of their superconductivity. In this work, we measure the low-energy electrodynamic response of slightly underdoped and overdoped La$_{2-x}$Ce$_x$CuO$_4$ thin films using time-domain terahertz (THz) spectroscopy to determine the temperature and field dependence of the superfluid spectral weight. We show that the temperature dependence obeys the relation textit{n$_s$} $propto$ $1-(T/T_c)^2$, typical for dirty limit BCS-like $d$-wave superconductors. Furthermore, the magnetic field dependence was found to follow a sublinear $sqrt{B}$ form, which supports predictions based on a $d$-wave symmetry for the superconducting gap. These observations imply that the superconducting order in these electron-doped cuprates can be well described in terms of a disordered BCS $d$-wave formalism.
We propose a weakly coupled two-band model with $d_{x^2-y^2}$ pairing symmetry to account for the anomalous temperature dependence of superfluid density $rho_s$ in electron-doped cuprate superconductors. This model gives a unified explanation to the presence of a upward curvature in $rho_s$ near $T_c$ and a weak temperature dependence of $rho_s$ in low temperatures. Our work resolves a discrepancy in the interpretation of different experimental measurements and suggests that the pairing in electron-doped cuprates has predominately $d_{x^2-y^2}$ symmetry in the whole doping range.
The angle-resolved photoemission spectroscopy (ARPES) autocorrelation in the electron-doped cuprate superconductors is studied based on the kinetic-energy driven superconducting (SC) mechanism. It is shown that the strong electron correlation induces the electron Fermi surface (EFS) reconstruction, where the most of the quasiparticles locate at around the hot spots on EFS, and then these hot spots connected by the scattering wave vectors ${bf q}_{i}$ construct an {it octet} scattering model. In a striking analogy to the hole-doped case, the sharp ARPES autocorrelation peaks are directly correlated with the scattering wave vectors ${bf q}_{i}$, and are weakly dispersive in momentum space. However, in a clear contrast to the hole-doped counterparts, the position of the ARPES autocorrelation peaks move toward to the opposite direction with the increase of doping. The theory also indicates that there is an intrinsic connection between the ARPES autocorrelation and quasiparticle scattering interference (QSI) in the electron-doped cuprate superconductors.
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lambda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO) crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and conclude that the electron-doped cuprate superconductors have nodes in the superconducting gap. Furthermore, using the surface impedance, we have derived the real part of the conductivity, sigma_1(T), below T_c and found a behavior similar to that observed in hole-doped cuprates.
The recent experiments revealed a remarkable possibility for the absence of the disparity between the phase diagrams of the electron- and hole-doped cuprate superconductors, while such an aspect should be also reflected in the dressing of the electrons. Here the phase diagram of the electron-doped cuprate superconductors and the related exotic features of the anisotropic dressing of the electrons are studied based on the kinetic-energy driven superconductivity. It is shown that although the optimized Tc in the electron-doped side is much smaller than that in the hole-doped case, the electron- and hole-doped cuprate superconductors rather resemble each other in the doping range of the superconducting dome, indicating an absence of the disparity between the phase diagrams of the electron- and hole-doped cuprate superconductors. In particular, the anisotropic dressing of the electrons due to the strong electrons coupling to a strongly dispersive spin excitation leads to that the electron Fermi surface is truncated to form the disconnected Fermi arcs centered around the nodal region. Concomitantly, the dip in the peak-dip-hump structure of the quasiparticle excitation spectrum is directly associated with the corresponding peak in the quasiparticle scattering rate, while the dispersion kink is always accompanied by the corresponding inflection point in the total self-energy, as the dip in the peak-dip-hump structure and dispersion kink in the hole-doped counterparts. The theory also predicts that both the normal and anomalous self-energies exhibit the well-pronounced low-energy peak-structures.
We measured the magnetoresistance as a function of temperature down to 20mK and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with controlled oxygen content. This allows us to access the edge of the superconducting dome on the underdoped side. The sheet resistance increases with increasing oxygen content whereas the superconducting transition temperature is steadily decreasing down to zero. Upon applying various magnetic fields to suppress superconductivity we found that the sheet resistance increases when the temperature is lowered. It saturates at very low temperatures. These results, along with the magnetoresistance, cannot be described in the context of zero temperature two dimensional superconductor-to-insulator transition nor as a simple Kondo effect due to scattering off spins in the copper-oxide planes. We conjecture that due to the proximity to an antiferromagnetic phase magnetic droplets are induced. This results in negative magnetoresistance and in an upturn in the resistivity.