Do you want to publish a course? Click here

General first-order mass ladder operators for Klein-Gordon fields

72   0   0.0 ( 0 )
 Added by Masashi Kimura
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the ladder operator on scalar fields, mapping a solution of the Klein-Gordon equation onto another solution with a different mass, when the operator is at most first order in derivatives. Imposing the commutation relation between the dAlembertian, we obtain the general condition for the ladder operator, which contains a non-trivial case which was not discussed in the previous work [V. Cardoso, T. Houri and M. Kimura, Phys.Rev.D 96, 024044 (2017), arXiv:1706.07339]. We also discuss the relation with supersymmetric quantum mechanics.



rate research

Read More

Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a scalar field onto another massive scalar field. We construct such operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci tensor. As an example, we explicitly construct these objects in anti-de Sitter spacetime (AdS) and show that they exist for masses above the Breitenlohner-Freedman (BF) bound. Starting from a regular seed solution of the massive Klein-Gordon equation (KGE), mass ladder operators in AdS allow one to build a variety of regular solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called Aretakis constants in an extremal black hole.
187 - M. Buzzegoli 2017
We present a systematic calculation of the corrections of the stress-energy tensor and currents of the free boson and Dirac fields up to second order in thermal vorticity, which is relevant for relativistic hydrodynamics. These corrections are non-dissipative because they survive at general thermodynamic equilibrium with non vanishing mean values of the conserved generators of the Lorentz group, i.e. angular momenta and boosts. Their equilibrium nature makes it possible to express the relevant coefficients by means of correlators of the angular-momentum and boost operators with stress-energy tensor and current, thus making simpler to determine their so-called Kubo formulae. We show that, at least for free fields, the corrections are of quantum origin and we study several limiting cases and compare our results with previous calculations. We find that the axial current of the free Dirac field receives corrections proportional to the vorticity independently of the anomalous term.
We investigate the separability of Klein-Gordon equation on near horizon of d-dimensional rotating Myers-Perry black hole in two limits : 1) generic extremal case and 2) extremal vanishing horizon case. In the first case , there is a relation between the mass and rotation parameters so that black hole temperature vanishes. In the latter case, one of the rotation parameters is restricted to zero on top of the extremality condition. We show that the Klein-Gordon equation is separable in both cases. Also, we solved the radial part of that equation and discuss its behaviour in small and large r regions.
A system of coupled kinetic transport equations for the Wigner distributions of a free variable mass Klein-Gordon field is derived. This set of equations is formally equivalent to the full wave equation for electromagnetic waves in nonlinear dispersive media, thus allowing for the description of broadband radiation-matter interactions and the associated instabilities. The standard results for the classical wave action are recovered in the short wavelength limit of the generalized Wigner-Moyal formalism for the wave equation.
194 - K.B. Alkalaev 2010
We formulate Fradkin-Vasiliev type theory of massless higher spin fields in AdS(5). The corresponding action functional describes cubic order approximation to gravitational interactions of bosonic mixed-symmetry fields of a particular hook symmetry type and totally symmetric bosonic and fermionic fields.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا