Do you want to publish a course? Click here

Mass Ladder Operators from Spacetime Conformal Symmetry

136   0   0.0 ( 0 )
 Added by Masashi Kimura
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a scalar field onto another massive scalar field. We construct such operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci tensor. As an example, we explicitly construct these objects in anti-de Sitter spacetime (AdS) and show that they exist for masses above the Breitenlohner-Freedman (BF) bound. Starting from a regular seed solution of the massive Klein-Gordon equation (KGE), mass ladder operators in AdS allow one to build a variety of regular solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called Aretakis constants in an extremal black hole.



rate research

Read More

We study the ladder operator on scalar fields, mapping a solution of the Klein-Gordon equation onto another solution with a different mass, when the operator is at most first order in derivatives. Imposing the commutation relation between the dAlembertian, we obtain the general condition for the ladder operator, which contains a non-trivial case which was not discussed in the previous work [V. Cardoso, T. Houri and M. Kimura, Phys.Rev.D 96, 024044 (2017), arXiv:1706.07339]. We also discuss the relation with supersymmetric quantum mechanics.
We make use of the conformal compactification of Minkowski spacetime $M^{#}$ to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime $[M^{#}]^{-1}$ obtained via conformal inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying $M^{#}$ with the projective light cone in $(4+2)$-dimensional spacetime, we write two independent conformal-invariant functionals of the $6$-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.
We argue that the scattering of gravitons in ordinary Einstein gravity possesses a hidden conformal symmetry at tree level in any number of dimensions. The presence of this conformal symmetry is indicated by the dilaton soft theorem in string theory, and it is reminiscent of the conformal invariance of gluon tree-level amplitudes in four dimensions. To motivate the underlying prescription, we demonstrate that formulating the conformal symmetry of gluon amplitudes in terms of momenta and polarization vectors requires manifest reversal and cyclic symmetry. Similarly, our formulation of the conformal symmetry of graviton amplitudes relies on a manifestly permutation symmetric form of the amplitude function.
We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of the Randall-Sundrum graviton wavefunction and can be localized anywhere in the bulk. There is also a vector zero mode with similar localization properties, which is decoupled from conserved sources at tree level. Interestingly, there are no scalar modes, and the model is ghost-free at the linearized level. When the tensor zero mode is localized near the IR brane, the dual interpretation is a composite graviton describing an emergent (induced) theory of gravity at the IR scale. In this case Newtons law of gravity changes to a new power law below the millimeter scale, with an exponent that can even be irrational.
138 - Ken-ji Hamada 2009
Conformal algebra on R x S^3 derived from quantized gravitational fields is examined. The model we study is a renormalizable quantum theory of gravity in four dimensions described by a combined system of the Weyl action for the traceless tensor mode and the induced Wess-Zumino action managing non-perturbative dynamics of the conformal factor in the metric field. It is shown that the residual diffeomorphism invariance in the radiation^+ gauge is equal to the conformal symmetry, and the conformal transformation preserving the gauge-fixing condition that forms a closed algebra quantum mechanically is given by a combination of naive conformal transformation and a certain field-dependent gauge transformation. The unitarity issue of gravity is discussed in the context of conformal field theory. We construct physical states by solving the conformal invariance condition and calculate their scaling dimensions. It is shown that the conformal symmetry mixes the positive-metric and the negative-metric modes and thus the negative-metric mode does not appear independently as a gauge invariant state at all.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا