Do you want to publish a course? Click here

General equilibrium second-order hydrodynamic coefficients for free quantum fields

188   0   0.0 ( 0 )
 Added by Francesco Becattini
 Publication date 2017
  fields Physics
and research's language is English
 Authors M. Buzzegoli




Ask ChatGPT about the research

We present a systematic calculation of the corrections of the stress-energy tensor and currents of the free boson and Dirac fields up to second order in thermal vorticity, which is relevant for relativistic hydrodynamics. These corrections are non-dissipative because they survive at general thermodynamic equilibrium with non vanishing mean values of the conserved generators of the Lorentz group, i.e. angular momenta and boosts. Their equilibrium nature makes it possible to express the relevant coefficients by means of correlators of the angular-momentum and boost operators with stress-energy tensor and current, thus making simpler to determine their so-called Kubo formulae. We show that, at least for free fields, the corrections are of quantum origin and we study several limiting cases and compare our results with previous calculations. We find that the axial current of the free Dirac field receives corrections proportional to the vorticity independently of the anomalous term.



rate research

Read More

104 - M. Buzzegoli 2018
We calculate the constitutive equations of the stress-energy tensor and the currents of the free massless Dirac field at thermodynamic equilibrium with acceleration and rotation and a conserved axial charge by using the density operator approach. We carry out an expansion in thermal vorticity to the second order with finite axial chemical potential $mu_A$. The obtained coefficients of the expansion are expressed as correlators of angular momenta and boost operators with the currents. We confirm previous observations that the axial chemical potential induces non-vanishing components of the stress-energy tensor at first order in thermal vorticity due to breaking of parity invariance of the density operator with $mu_A e 0$. The appearance of these components might play an important role in chiral hydrodynamics.
We study the ladder operator on scalar fields, mapping a solution of the Klein-Gordon equation onto another solution with a different mass, when the operator is at most first order in derivatives. Imposing the commutation relation between the dAlembertian, we obtain the general condition for the ladder operator, which contains a non-trivial case which was not discussed in the previous work [V. Cardoso, T. Houri and M. Kimura, Phys.Rev.D 96, 024044 (2017), arXiv:1706.07339]. We also discuss the relation with supersymmetric quantum mechanics.
147 - F. Becattini 2014
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector beta, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the beta frame and Landau frame and present an instance where they differ.
We study the Post-Minkowskian (PM) and Post-Newtonian (PN) expansions of the gravitational three-body effective potential. At order 2PM a formal result is given in terms of a differential operator acting on the maximal generalized cut of the one-loop triangle integral. We compute the integral in all kinematic regions and show that the leading terms in the PN expansion are reproduced. We then perform the PN expansion unambiguously at the level of the integrand. Finding agreement with the 2PN three-body potential after integration, we explicitly present new $G^2v^4$-contributions at order 3PN and outline the generalization to $G^2v^{2n}$. The integrals that represent the essential input for these results are obtained by applying the recent Yangian bootstrap directly to their $epsilon$-expansion around three dimensions. The coordinate space Yangian generator that we employ to obtain these integrals can be understood as a special conformal symmetry in a dual momentum space.
We study the behavior of quasinormal modes in a top-down holographic dual corresponding to a strongly coupled $mathcal{N} = 4$ super Yang-Mills plasma charged under a $U(1)$ subgroup of the global $SU(4)$ R-symmetry. In particular, we analyze the spectra of quasinormal modes in the external scalar and vector diffusion channels near the critical point and obtain the behavior of the characteristic equilibration times of the plasma as the system evolves towards the critical point of its phase diagram. Except close to the critical point, we observe that by increasing the chemical potential one generally increases the damping rate of the quasinormal modes, which leads to a reduction of the characteristic equilibration times in the dual strongly coupled plasma. However, as one approaches the critical point the typical equilibration time (as estimated from the lowest non-hydrodynamic quasinormal mode frequency) increases, although remaining finite, while its derivative with respect to the chemical potential diverges with exponent -1/2. We also find a purely imaginary non-hydrodynamical mode in the vector diffusion channel at nonzero chemical potential which dictates the equilibration time in this channel near the critical point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا