Do you want to publish a course? Click here

Exciting surface plasmon polaritons in the Kretschmann configuration by light beam

125   0   0.0 ( 0 )
 Added by Alexander Lisyansky
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.



rate research

Read More

We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theoretical concept for a spectroscopic technique that consists in scanning the output of resonance fluorescence onto an optical target, from which weak nonlinearities can be read with high precision even in strongly dissipative environments.
We study a surface plasmon polariton mode that is strongly confined in the transverse direction and propagates along a periodically nanostructured metal-dielectric interface. We show that the wavelength of this mode is determined by the period of the structure, and may therefore, be orders of magnitude smaller than the wavelength of a plasmon-polariton propagating along a flat surface. This plasmon polariton exists in the frequency region in which the sum of the real parts of the permittivities of the metal and dielectric is positive, a frequency region in which surface plasmon polaritons do not exist on a flat surface. The propagation length of the new mode can reach a several dozen wavelengths. This mode can be observed in materials that are uncommon in plasmonics, such as aluminum or sodium.
Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes for intermediate values of the wave vector. Depending on the relative orientation of the separation of Weyl nodes in momentum space, the surface normal, and the direction of propagation, the dispersion relation of surface plasmon polaritons could be nonreciprocal even in a thin slab. In addition, strain-induced axial gauge fields can significantly affect the localization properties of the collective modes. These effects allow for an in situ control of the propagation of surface plasmon polaritons in Weyl semimetals and might be useful for creating nonreciprocal devices.
Surface plasmon polaritons have attracted varies of interests due to its special properties, especially in the polarization-controlled devices. Typically, the polarization-controlled devices include directional coupling, focusing lens and plasmonic vortex lens, and almost all of them are controlled by the input circularly polarized light or the linearly polarized light. We present a novel device that realize the functions of directional coupling and focusing with high polarization extinction ratio for arbitrary spin of input light. This device offers opportunities for polarization sensing, polarization splitting and polarization-multiplexed near-field images and surface plasmon holography in the future.
Surface plasmon-polaritons have recently attracted renewed interest in the scientific community for their potential in sub-wavelength optics, light generation and non-destructive sensing. Given that they cannot be directly excited by freely propagating light due to their intrinsical binding to the metal surface, the light-plasmon coupling efficiency becomes of crucial importance for the success of any plasmonic device. Here we present a comprehensive study on the modulation (enhancement or suppression) of such coupling efficiency by means of one-dimensional surface corrugation. Our approach is based on simple wave interference and enables us to make quantitative predictions which have been experimentally confirmed at both the near infra-red and telecom ranges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا