No Arabic abstract
We study a surface plasmon polariton mode that is strongly confined in the transverse direction and propagates along a periodically nanostructured metal-dielectric interface. We show that the wavelength of this mode is determined by the period of the structure, and may therefore, be orders of magnitude smaller than the wavelength of a plasmon-polariton propagating along a flat surface. This plasmon polariton exists in the frequency region in which the sum of the real parts of the permittivities of the metal and dielectric is positive, a frequency region in which surface plasmon polaritons do not exist on a flat surface. The propagation length of the new mode can reach a several dozen wavelengths. This mode can be observed in materials that are uncommon in plasmonics, such as aluminum or sodium.
Surface electromagnetic modes supported by metal surfaces have a great potential for uses in miniaturised detectors and optical circuits. For many applications these modes are excited locally. In the optical regime, Surface Plasmon Polaritons (SPPs) have been thought to dominate the fields at the surface, beyond a transition region comprising 3-4 wavelengths from the source. In this work we demonstrate that at sufficiently long distances SPPs are not the main contribution to the field. Instead, for all metals, a different type of wave prevails, which we term Norton waves for their reminiscence to those found in the radio-wave regime at the surface of the Earth. Our results show that Norton Waves are stronger at the surface than SPPs at distances larger than 6-9 SPPs absorption lengths, the precise value depending on wavelength and metal. Moreover, Norton waves decay more slowly than SPPs in the direction normal to the surface.
Surface plasmon polaritons in a strained slab of a Weyl semimetal with broken time-reversal symmetry are investigated. It is found that the strain-induced axial gauge field reduces frequencies of these collective modes for intermediate values of the wave vector. Depending on the relative orientation of the separation of Weyl nodes in momentum space, the surface normal, and the direction of propagation, the dispersion relation of surface plasmon polaritons could be nonreciprocal even in a thin slab. In addition, strain-induced axial gauge fields can significantly affect the localization properties of the collective modes. These effects allow for an in situ control of the propagation of surface plasmon polaritons in Weyl semimetals and might be useful for creating nonreciprocal devices.
We theoretically investigate surface plasmon polaritons propagating in the thin-film Weyl semimetals. We show how the properties of surface plasmon polaritons are affected by hybridization between plasmons localized at the two metal-dielectric interfaces. Generally, this hybridization results in new mixed plasmon modes, which are called short-range surface plasmons and long-range surface plasmons, respectively. We calculate dispersion curves of these mixed modes for three principle configurations of the axion vector describing axial anomaly in Weyl semimetals. We show that the partial lack of the dispersion and the non-reciprocity can be controlled by fine-tuning of the thickness of the Weyl semimetals, the dielectric constants of the outer insulators, and the direction of the axion vector.
We study the spectra and damping of surface plasmon-polaritons in double graphene layer structures. It is shown that application of bias voltage between layers shifts the edge of plasmon absorption associated with the interband transitions. This effect could be used in efficient plasmonic modulators. We reveal the influence of spatial dispersion of conductivity on plasmonic spectra and show that it results in the shift of cutoff frequency to the higher values.
The dispersion relation of surface plasmon polaritons in graphene that includes optical losses is often obtained for complex wave vectors while the frequencies are assumed to be real. This approach, however, is not suitable for describing the temporal dynamics of optical excitations and the spectral properties of graphene. Here, we propose an alternative approach that calculates the dispersion relation in the complex frequency and real wave vector space. This approach provides a clearer insight into the optical properties of a graphene layer and allows us to find the surface plasmon modes of a graphene sheet in the full frequency range, thus removing the earlier reported limitation (1.667 < $hbaromega/mu$ < 2) for the transverse-electric mode. We further develop a simple analytic approximation which accurately describes the dispersion of the surface plasmon polariton modes in graphene. Using this approximation, we show that transverse-electric surface plasmon polaritons propagate along the graphene sheet without losses even at finite temperature.