The interband dynamics of a two-band Bose-Hubbard model is studied with strongly correlated bosons forming single-site double occupancies referred to as doublons. Our model for resonant doublon interband coupling exhibits interesting dynamical features such as quantum Zeno effect, the generation of states such as a two-band Bell-like state and an upper-band Mott-like state. The evolution of the asymptotic state is controlled here by the effective opening of one or both of the two bands, which models decay channels.
We study the ground-state properties of ultracold bosons in an optical lattice in the regime of strong interactions. The system is described by a non-standard Bose-Hubbard model with both occupation-dependent tunneling and on-site interaction. We find that for sufficiently strong coupling the system features a phase-transition from a Mott insulator with one particle per site to a superfluid of spatially extended particle pairs living on top of the Mott background -- instead of the usual transition to a superfluid of single particles/holes. Increasing the interaction further, a superfluid of particle pairs localized on a single site (rather than being extended) on top of the Mott background appears. This happens at the same interaction strength where the Mott-insulator phase with 2 particles per site is destroyed completely by particle-hole fluctuations for arbitrarily small tunneling. In another regime, characterized by weak interaction, but high occupation numbers, we observe a dynamical instability in the superfluid excitation spectrum. The new ground state is a superfluid, forming a 2D slab, localized along one spatial direction that is spontaneously chosen.
We present a two-band Bose-Hubbard model which is shown to be minimal in the necessary coupling terms at resonant tunneling conditions. The dynamics of the many-body problem is studied by sweeping the system across an avoided level crossing. The linear sweep generalizes Landau-Zener transitions from single-particle to many-body realizations. The temporal evolution of single- and two-body observables along the sweeps is investigated in order to characterize the non-equilibrium dynamics in our complex quantum system.
Open many-body quantum systems have recently gained renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. A series of results in diverse setups is presented, based on a Master equation approach to describe the dissipative dynamics of ultracold bosons in a one-dimensional lattice. The creation of mesoscopic stable many-body structures in the lattice is predicted and the non-equilibrium transport of neutral atoms in the regime of strong and weak interactions is studied.
We study the dynamics of an interacting Bose-Hubbard chain coupled to a non-Markovian environment. Our basic tool is the reduced generating functional expressed as a path integral over spin-coherent states. We calculate the leading contribution to the corresponding effective action, and by minimizing it, we derive mean-field equations that can be numerically solved. With this tool at hand, we examine the influence of the systems initial conditions and interparticle interactions on the dissipative dynamics. Moreover, we investigate the presence of memory effects due to the non-Markovian environment.
We study ergodicity breaking in the clean Bose-Hubbard chain for small hopping strength. We see the existence of a non-ergodic regime by means of indicators as the half-chain entanglement entropy of the eigenstates, the average level spacing ratio, {the properties of the eigenstate-expectation distribution of the correlation and the scaling of the Inverse Participation Ratio averages.} We find that this ergodicity breaking {is different from many-body localization} because the average half-chain entanglement entropy of the eigenstates obeys volume law. This ergodicity breaking appears unrelated to the spectrum being organized in quasidegenerate multiplets at small hopping and finite system sizes, so in principle it can survive also for larger system sizes. We find that some imbalance oscillations in time which could mark the existence of a glassy behaviour in space are well described by the dynamics of a single symmetry-breaking doublet and {quantitatively} captured by a perturbative effective XXZ model. We show that the amplitude of these oscillations vanishes in the large-size limit. {Our findings are numerically obtained for systems with $L < 12$. Extrapolations of our scalings to larger system sizes should be taken with care, as discussed in the paper.
Manuel H. Mu~noz-Arias
,Carlos A. Parra-Murillo
,Javier Madro~nero
.
(2017)
.
"Occupation-constrained interband dynamics of a non-hermitian two-band Bose-Hubbard Hamiltonian"
.
Carlos Alberto Parra Murillo Parra-Murillo
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا