No Arabic abstract
We study ergodicity breaking in the clean Bose-Hubbard chain for small hopping strength. We see the existence of a non-ergodic regime by means of indicators as the half-chain entanglement entropy of the eigenstates, the average level spacing ratio, {the properties of the eigenstate-expectation distribution of the correlation and the scaling of the Inverse Participation Ratio averages.} We find that this ergodicity breaking {is different from many-body localization} because the average half-chain entanglement entropy of the eigenstates obeys volume law. This ergodicity breaking appears unrelated to the spectrum being organized in quasidegenerate multiplets at small hopping and finite system sizes, so in principle it can survive also for larger system sizes. We find that some imbalance oscillations in time which could mark the existence of a glassy behaviour in space are well described by the dynamics of a single symmetry-breaking doublet and {quantitatively} captured by a perturbative effective XXZ model. We show that the amplitude of these oscillations vanishes in the large-size limit. {Our findings are numerically obtained for systems with $L < 12$. Extrapolations of our scalings to larger system sizes should be taken with care, as discussed in the paper.
Periodic driving has emerged as a powerful tool in the quest to engineer new and exotic quantum phases. While driven many-body systems are generically expected to absorb energy indefinitely and reach an infinite-temperature state, the rate of heating can be exponentially suppressed when the drive frequency is large compared to the local energy scales of the system -- leading to long-lived prethermal regimes. In this work, we experimentally study a bosonic cloud of ultracold atoms in a driven optical lattice and identify such a prethermal regime in the Bose-Hubbard model. By measuring the energy absorption of the cloud as the driving frequency is increased, we observe an exponential-in-frequency reduction of the heating rate persisting over more than 2 orders of magnitude. The tunability of the lattice potentials allows us to explore one- and two-dimensional systems in a range of different interacting regimes. Alongside the exponential decrease, the dependence of the heating rate on the frequency displays features characteristic of the phase diagram of the Bose-Hubbard model, whose understanding is additionally supported by numerical simulations in one dimension. Our results show experimental evidence of the phenomenon of Floquet prethermalization, and provide insight into the characterization of heating for driven bosonic systems.
Open many-body quantum systems have recently gained renewed interest in the context of quantum information science and quantum transport with biological clusters and ultracold atomic gases. A series of results in diverse setups is presented, based on a Master equation approach to describe the dissipative dynamics of ultracold bosons in a one-dimensional lattice. The creation of mesoscopic stable many-body structures in the lattice is predicted and the non-equilibrium transport of neutral atoms in the regime of strong and weak interactions is studied.
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of large size. The Floquet states violate eigenstate thermalization and then the asymptotic value of local observables depends on the initial state and is not thermal. This implies that the system does not generically heat up to infinite temperature, for almost all the initial states. Differently from many-body localization here the entanglement entropy linearly increases in time. This increase corresponds to space-delocalized Floquet states which are nevertheless localized across specific subsectors of the Hilbert space: In this way the system is prevented from randomly exploring all the Hilbert space and does not thermalize.
The thermalization of isolated quantum many-body systems is deeply related to fundamental questions of quantum information theory. While integrable or many-body localized systems display non-ergodic behavior due to extensively many conserved quantities, recent theoretical studies have identified a rich variety of more exotic phenomena in between these two extreme limits. The tilted one-dimensional Fermi-Hubbard model, which is readily accessible in experiments with ultracold atoms, emerged as an intriguing playground to study non-ergodic behavior in a clean disorder-free system. While non-ergodic behavior was established theoretically in certain limiting cases, there is no complete understanding of the complex thermalization properties of this model. In this work, we experimentally study the relaxation of an initial charge-density wave and find a remarkably long-lived initial-state memory over a wide range of parameters. Our observations are well reproduced by numerical simulations of a clean system. Using analytical calculations we further provide a detailed microscopic understanding of this behavior, which can be attributed to emergent kinetic constraints.
We present a non-equilibrium Greens functional approach to study the dynamics following a quench in weakly interacting Bose Hubbard model (BHM). The technique is based on the self-consistent solution of a set of equations which represents a particular case of the most general set of Hedins equations for the interacting single-particle Greens function. We use the ladder approximation as a skeleton diagram for the two-particle scattering amplitude useful, through the self-energy in the Dyson equation, for finding the interacting single-particle Greens function. This scheme is then implemented numerically by a parallelized code. We exploit this approach to study the correlation propagation after a quench in the interaction parameter, for one (1D) and two (2D) dimensions. In particular, we show how our approach is able to recover the crossover from ballistic to diffusive regime by increasing the boson-boson interaction. Finally we also discuss the role of a thermal initial state on the dynamics both for 1D and 2D Bose Hubbard models, finding that surprisingly at high temperature a ballistic evolution is restored.