Do you want to publish a course? Click here

Chaotic level mixing in a two-band Bose-Hubbard model

119   0   0.0 ( 0 )
 Added by Sandro Wimberger
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a two-band Bose-Hubbard model which is shown to be minimal in the necessary coupling terms at resonant tunneling conditions. The dynamics of the many-body problem is studied by sweeping the system across an avoided level crossing. The linear sweep generalizes Landau-Zener transitions from single-particle to many-body realizations. The temporal evolution of single- and two-body observables along the sweeps is investigated in order to characterize the non-equilibrium dynamics in our complex quantum system.



rate research

Read More

The interband dynamics of a two-band Bose-Hubbard model is studied with strongly correlated bosons forming single-site double occupancies referred to as doublons. Our model for resonant doublon interband coupling exhibits interesting dynamical features such as quantum Zeno effect, the generation of states such as a two-band Bell-like state and an upper-band Mott-like state. The evolution of the asymptotic state is controlled here by the effective opening of one or both of the two bands, which models decay channels.
Based on the analytic model of Feshbach resonances in harmonic traps described in Phys. Rev. A 83, 030701 (2011) a Bose-Hubbard model is introduced that provides an accurate description of two atoms in an optical lattice at a Feshbach resonance with only a small number of Bloch bands. The approach circumvents the problem that the eigenenergies in the presence of a delta-like coupling do not converge to the correct energies, if an uncorrelated basis is used. The predictions of the Bose-Hubbard model are compared to non-perturbative calculations for both the stationary states and the time-dependent wavefunction during an acceleration of the lattice potential. For this purpose, a square-well interaction potential is introduced, which allows for a realistic description of Feshbach resonances within non-perturbative single-channel calculations.
An exciting development in the field of correlated systems is the possibility of realizing two-dimensional (2D) phases of quantum matter. For a systems of bosons, an example of strong correlations manifesting themselves in a 2D environment is provided by helium adsorbed on graphene. We construct the effective Bose-Hubbard model for this system which involves hard-core bosons $(Uapproxinfty)$, repulsive nearest-neighbor $(V>0)$ and small attractive $(V<0)$ next-nearest neighbor interactions. The mapping onto the Bose-Hubbard model is accomplished by a variety of many-body techniques which take into account the strong He-He correlations on the scale of the graphene lattice spacing. Unlike the case of dilute ultracold atoms where interactions are effectively point-like, the detailed microscopic form of the short range electrostatic and long range dispersion interactions in the helium-graphene system are crucial for the emergent Bose-Hubbard description. The result places the ground state of the first layer of $^4$He adsorbed on graphene deep in the commensurate solid phase with $1/3$ of the sites on the dual triangular lattice occupied. Because the parameters of the effective Bose-Hubbard model are very sensitive to the exact lattice structure, this opens up an avenue to tune quantum phase transitions in this solid-state system.
We study the system of multi-body interacting bosons on a two dimensional optical lattice and analyze the formation of bound bosonic pairs in the context of the Bose-Hubbard model. Assuming a repulsive two-body interaction we obtain the signatures of pair formation in the regions between the Mott insulator lobes of the phase diagram for different choices of higher order local interactions. Considering the most general Bose-Hubbard model involving local multi-body interactions we investigate the ground state properties utilizing the cluster mean-field theory approach and further confirm the results by means of sophisticated infinite Projected Entangled Pair States calculations. By using various order parameters, we show that the choice of higher-order interaction can lead to pair superfluid phase in the system between two different Mott lobes. We also analyze the effect of temperature and density-dependent tunneling to establish the stability of the PSF phase.
We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass on the strong link, whereas the second, existing only thanks to nearest-neighbors interactions, is centered on the weak link. We identify energy crossings between these states and analyse them using exact diagonalization and perturbation theory. In the presence of open boundary conditions, novel strongly-localized edge-bound states appear in the spectrum as a consequence of the interplay between lattice geometry, on-site and nearest-neighbor interactions. Contrary to the case of purely on-site interactions, such EBS persist even in the strongly interacting regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا