Do you want to publish a course? Click here

Correlated electron-hole mechanism for molecular doping in organic semiconductors

185   0   0.0 ( 0 )
 Added by Gabriele D'Avino
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic and optical properties of the paradigmatic F4TCNQ-doped pentacene in the low-doping limit are investigated by a combination of state-of-the-art many-body emph{ab initio} methods accounting for environmental screening effects, and a carefully parametrized model Hamiltonian. We demonstrate that while the acceptor level lies very deep in the gap, the inclusion of electron-hole interactions strongly stabilizes dopant-semiconductor charge transfer states and, together with spin statistics and structural relaxation effects, rationalize the possibility for room-temperature dopant ionization. Our findings reconcile available experimental data, shedding light on the partial vs. full charge transfer scenario discussed in the literature, and question the relevance of the standard classification in shallow or deep impurity levels prevailing for inorganic semiconductors.



rate research

Read More

The tunability of high-mobility organic semi-conductors (OSCs) holds great promise for molecular spintronics. In this study, we show this extreme variability - and therefore potential tunability - of the molecular gyromagnetic coupling (g-) tensor with respect to the geometric and electronic structure in a much studied class of OSCs. Composed of a structural theme of phenyl- and chalcogenophene (group XVI element containing, five-membered) rings and alkyl functional groups, this class forms the basis of several intensely studied high-mobility polymers and molecular OSCs. We show how in this class the g-tensor shifts, $Delta g$, are determined by the effective molecular spin-orbit coupling (SOC), defined by the overlap of the atomic spin-density and the heavy atoms in the polymers. We explain the dramatic variations in SOC with molecular geometry, chemical composition, functionalization, and charge life-time using a first-principles theoretical model based on atomic spin populations. Our approach gives a guide to tuning the magnetic response of these OSCs by chemical synthesis.
Unconventional superconductivity in molecular conductors is observed at the border of metal-insulator transitions in correlated electrons under the influence of geometrical frustration. The symmetry as well as the mechanism of the superconductivity (SC) is highly controversial. To address this issue, we theoretically explore the electronic properties of carrier-doped molecular Mott system $kappa$-(BEDT-TTF)$_2$X. We find significant electron-hole doping asymmetry in the phase diagram where antiferromagnetic (AF) spin order, different patterns of charge order, and SC compete with each other. Hole-doping stabilizes AF phase and promotes SC with $d_{xy}$-wave symmetry, which has similarities with high-$T_c$ cuprates. In contrast, in the electron-doped side, geometrical frustration destabilizes the AF phase and the enhanced charge correlation induces another SC with extended-$s$+$d_{x^2-y^2}$-wave symmetry. Our results disclose the mechanism of each phase appearing in filling-control molecular Mott systems, and elucidate how physics of different strongly-correlated electrons are connected, namely, molecular conductors and high-$T_c$ cuprates.
72 - P. Thomas 2000
Local ultrafast optical excitation of electron-hole pairs in disordered semiconductors provides the possibility to observe experimentally interaction-assisted propagation of correlated quantum particles in a disordered environment. In addition to the interaction driven delocalization known for the conventional single-band TIP-(two-interacting-particles)-problem the semiconductor model has a richer variety of physical parameters that give rise to new features in the temporal dynamics. These include different masses, correlated vs. anticorrelated disorder for the two particles, and dependence on spectral position of excitation pulse.
When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a fermionic plasma of unbound particles or a bosonic exciton gas. Usually, the exciton phase is associated with low temperatures. In atomically thin transition metal dichalcogenide semiconductors, excitons are particularly important even at room temperature due to strong Coulomb interaction and a large exciton density of states. Using state-of-the-art many-body theory including dynamical screening, we show that the exciton-to-plasma ratio can be efficiently tuned by dielectric substrate screening as well as charge carrier doping. Moreover, we predict a Mott transition from the exciton-dominated regime to a fully ionized electron-hole plasma at excitation densities between $3times10^{12}$ cm$^{-2}$ and $1times10^{13}$ cm$^{-2}$ depending on temperature, carrier doping and dielectric environment. We propose the observation of these effects by studying excitonic satellites in photoemission spectroscopy and scanning tunneling microscopy.
Multiexcitons in monolayer WSe2 exhibit a suite of optoelectronic phenomena that are unique to those of their single exciton constituents. Here, photoluminescence action spectroscopy shows that multiexciton formation is enhanced with increasing optical excitation energy. This enhancement is attributed to the multiexciton formation processes from an electron-hole plasma and results in over 300% more multiexciton emission than at lower excitation energies at 4 K. The energetic onset of the enhancement coincides with the quasiparticle bandgap, corroborating the role of the electron-hole plasma, and the enhancement diminishes with increasing temperature. The results reveal that the strong interactions responsible for ultrafast exciton formation also affect multiexciton phenomena, and both multiexciton and single exciton states play significant roles in plasma thermalization in 2D semiconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا