Do you want to publish a course? Click here

Molecular Tuning of the Magnetic Response in Organic Semiconductors

98   0   0.0 ( 0 )
 Added by Erik R. McNellis
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The tunability of high-mobility organic semi-conductors (OSCs) holds great promise for molecular spintronics. In this study, we show this extreme variability - and therefore potential tunability - of the molecular gyromagnetic coupling (g-) tensor with respect to the geometric and electronic structure in a much studied class of OSCs. Composed of a structural theme of phenyl- and chalcogenophene (group XVI element containing, five-membered) rings and alkyl functional groups, this class forms the basis of several intensely studied high-mobility polymers and molecular OSCs. We show how in this class the g-tensor shifts, $Delta g$, are determined by the effective molecular spin-orbit coupling (SOC), defined by the overlap of the atomic spin-density and the heavy atoms in the polymers. We explain the dramatic variations in SOC with molecular geometry, chemical composition, functionalization, and charge life-time using a first-principles theoretical model based on atomic spin populations. Our approach gives a guide to tuning the magnetic response of these OSCs by chemical synthesis.



rate research

Read More

The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven diffi- cult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g -shifts to spin-lattice relaxation times over four orders of magnitude, from 200 {mu}s to 0.15 {mu}s, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.
The electronic and optical properties of the paradigmatic F4TCNQ-doped pentacene in the low-doping limit are investigated by a combination of state-of-the-art many-body emph{ab initio} methods accounting for environmental screening effects, and a carefully parametrized model Hamiltonian. We demonstrate that while the acceptor level lies very deep in the gap, the inclusion of electron-hole interactions strongly stabilizes dopant-semiconductor charge transfer states and, together with spin statistics and structural relaxation effects, rationalize the possibility for room-temperature dopant ionization. Our findings reconcile available experimental data, shedding light on the partial vs. full charge transfer scenario discussed in the literature, and question the relevance of the standard classification in shallow or deep impurity levels prevailing for inorganic semiconductors.
163 - Tomasz Dietl 2007
This paper reviews the present understanding of the origin of ferromagnetic response of diluted magnetic semiconductors and diluted magnetic oxides as well as in some nominally magnetically undoped materials. It is argued that these systems can be grouped into four classes. To the first belong composite materials in which precipitations of a known ferromagnetic, ferrimagnetic or antiferromagnetic compound account for magnetic characteristics at high temperatures. The second class forms alloys showing chemical nano-scale phase separation into the regions with small and large concentrations of the magnetic constituent. To the third class belong (Ga,Mn)As, heavily doped p-(Zn,Mn)Te, and related semiconductors. In these solid solutions the theory built on p-d Zeners model of hole-mediated ferromagnetism and on either the Kohn-Luttinger kp theory or the multi-orbital tight-binding approach describes qualitatively, and often quantitatively many relevant properties. Finally, in a number of carrier-doped DMS and DMO a competition between long-range ferromagnetic and short-range antiferromagnetic interactions and/or the proximity of the localisation boundary lead to an electronic nano-scale phase separation.
118 - Danila Amoroso , Paolo Barone , 2021
The effects of competing magnetic interactions in stabilizing different spin configurations are drawing a renewed attention in order to both unveil emerging topological spin textures and to highlight microscopic mechanisms leading to their stabilization. The possible key role of the two-site exchange anisotropy in selecting specific helicity and vorticity of skyrmionic lattices has only recently been proposed. In this work we explore the phase diagram of a frustrated localized magnet on a two-dimensional centrosymmetric triangular lattice, focusing on the interplay between the two-ion anisotropy (TIA) and the single-ion anisotropy (SIA). The effects of an external magnetic field applied perpendicularly to the magnetic layer are also investigated. By means of Monte Carlo simulations, we find a profusion of different spin configurations, going from trivial to high-order Q skyrmionic and meronic lattices. In closer detail, we find that a dominant role is played by the two-ion over the single-ion anisotropy in determining the planar spin texture, whereas the strength and sign of SIA, together with the magnitude of the magnetic field, tune the perpendicular spin components, mostly affecting the polarity (and, in turn, the topology) of the spin-texture. Our analysis confirms the crucial role of anisotropic symmetric exchange in systems with dominant short-range interactions, at the same time predicting a rich variety of complex magnetic textures that may arise from a fine tuning of competing anisotropic mechanisms.
175 - B. F. Ding , Y. Yao , X. Y. Sun 2009
Magnetoelectroluminescence (MEL) of organic semiconductor has been experimentally tuned by adopting blended emitting layer consisting of both hole and electron transporting materials. A theoretical model considering intermolecular quantum correlation is proposed to demonstrate two fundamental issues: (1) two mechanisms, spin scattering and spin mixing, dominate the two different steps respectively in the process of the magnetic field modulated generation of exciton; (2) the hopping rate of carriers determines the intensity of MEL. Calculation successfully predicts the increase of singlet excitons in low field with little change of triplet exciton population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا