Do you want to publish a course? Click here

Novel solid state vacuum quartz encapsulated growth of p-Terphenyl: the parent High Tc Oraganic Superconductor (HTOS)

84   0   0.0 ( 0 )
 Added by Veer Awana Dr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an easy and versatile route for the synthesis of the parent phase of newest superconducting wonder material i.e. p-Terphenyl. Doped p-terphenyl has recently shown superconductivity with transition temperature as high as 120K. For crystal growth, the commercially available p-Terphenyl powder is pelletized, encapsulated in evacuated (10-4 Torr) quartz tube and subjected to high temperature (260C) melt followed by slow cooling at 5C/hour. Simple temperature controlled heating furnace is used during the process. The obtained crystal is one piece, shiny and plate like. Single crystal surface XRD (X-ray Diffraction) showed unidirectional (00l) lines, indicating that the crystal is grown along c-direction. Powder XRD of the specimen showed that as grown p-Terphenyl is crystallized in monoclinic structure with space group P21/a space group, having lattice parameters a = 8.08(2) A, b = 5.62(5) A and c= 13.58(3) A. Scanning electron microscopy (SEM) pictures of the crystal showed clear layered slab like growth without any visible contamination from oxygen. Characteristic reported Raman active modes related to C-C-C bending, C-H bending, C-C stretching and C-H stretching vibrations are seen clearly for the studied p-Terphenyl crystal. The physical properties of crystal are yet underway. The short letter reports an easy and versatile crystal growth method for obtaining quality p-terphenyl. The same growth method may probably be applied to doped p-terphenyl and to subsequently achieve superconductivity to the tune of as high 120K for the newest superconductivity wonder i.e., High Tc Oraganic Superconductor (HTOS).



rate research

Read More

63 - P. Neha , V. Sahu , 2017
Synthesis methodology for flakes of p-terphenyl through sublimation under inert atmosphere of argon is presented. Flake morphology of p-terphenyl provides a favourable environment for efficient intercalation of potassium. Ratio of potassium and p-terphenyl is adjusted so as to obtain the desired superconducting phase i.e. potassium doped p-terphenyl (K3C18H14). A clear transition is observed at 107 K under Zero Field Cooled (ZFC) and Field Cooled (FC) mode. But overall the moment is positive possibly due to impurity phase dominating characteristics in the presence of negligible superconducting volume fraction. The M-H loop taken at 20 K shows magnetic behaviour in synthesized K- doped p-terphenyl but upon background subtraction, it does exhibit characteristics of a type-2 superconductor.
Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamen- tal step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Omega) dependent bosonic function, Pi(Omega). We perform optical spectroscopy on Bi2212 crystals with simultaneous time- and frequency-resolution; this technique allows us to disentangle the electronic and phononic contributions by their different temporal evolution. The strength of the interaction ({lambda}~1.1) with the electronic excitations and their spectral distribution fully account for the high critical temperature of the superconducting phase transition.
We investigate the static and dynamic spin susceptibility of the 111 type Fe-based superconductor LiFeP with Tc ~ 5 K through the measurement of Knight shift 31K and the spin-lattice relaxation rate 1/T1 at 31P site by nuclear magnetic resonance. The constant 31K, small magnitudes of 1/T1T, along with the resistivity rho ~ T^2 all point to the weak spin correlations in LiFeP. 1/T1T display small enhancement toward Tc, indicating that the superconductivity is intimately correlated with the antiferromagnetic spin fluctuations.
105 - X. Zhao , G. Yu , Y. Cho 2006
This paper is published in Advanced Materials (available at http://www3.interscience.wiley.com/cgi-bin/abstract/113511105/ABSTRACT). It has been withdrawn from the cond-mat preprint archive in order to avoid a violation of the Journals policy.
236 - Teng Wang , Jianan Chu , Hua Jin 2019
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under different magnetic fields. A rather steep increase for the in-plane H_c2^ab with cooling, dmu_0H_c2^a/dT|T_c = -50.9 T/K, was observed, indicating an extremely high upper critical field. Possible origins for this behavior were discussed. The findings in our work is a great promotion both for understanding the physical properties and applications of 12442-type Fe-based superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا