Do you want to publish a course? Click here

Crystal growth and characterization of the model high-temperature superconductor $HgBa_{2}CuO_{4+delta}$

106   0   0.0 ( 0 )
 Added by Guichuan Yu
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper is published in Advanced Materials (available at http://www3.interscience.wiley.com/cgi-bin/abstract/113511105/ABSTRACT). It has been withdrawn from the cond-mat preprint archive in order to avoid a violation of the Journals policy.



rate research

Read More

236 - Teng Wang , Jianan Chu , Hua Jin 2019
Millimeter sized single crystals of KCa_2Fe_4As_4F_2 were grown using a self-flux method. The chemical compositions and crystal structure were characterized carefully. Superconductivity with the critical transition T_c = 33.5 K was confirmed by both the resistivity and magnetic susceptibility measurements. Moreover, the upper critical field H_c2 was studied by the resistivity measurements under different magnetic fields. A rather steep increase for the in-plane H_c2^ab with cooling, dmu_0H_c2^a/dT|T_c = -50.9 T/K, was observed, indicating an extremely high upper critical field. Possible origins for this behavior were discussed. The findings in our work is a great promotion both for understanding the physical properties and applications of 12442-type Fe-based superconductors.
We report successful growth of flux free large single crystals of superconducting FeSe1/2Te1/2 with typical dimensions of up to few cm. The AC and DC magnetic measurements revealed the superconducting transition temperature (Tc) value of around 11.5K and the iso-thermal MH showed typical type-II superconducting behavior. The lower critical field being estimated by measuring the low field iso-thermal magnetization in superconducting regime is found to be above 200 Oe at 0K.
109 - Q. Liu , C. Chen , T. Zhang 2018
The Majorana fermion, which is its own anti-particle and obeys non-abelian statistics, plays a critical role in topological quantum computing. It can be realized as a bound state at zero energy, called a Majorana zero mode (MZM), in the vortex core of a topological superconductor, or at the ends of a nanowire when both superconductivity and strong spin orbital coupling are present. A MZM can be detected as a zero-bias conductance peak (ZBCP) in tunneling spectroscopy. However, in practice, clean and robust MZMs have not been realized in the vortices of a superconductor, due to contamination from impurity states or other closely-packed Caroli-de Gennes-Matricon (CdGM) states, which hampers further manipulations of Majorana fermions. Here using scanning tunneling spectroscopy, we show that a ZBCP well separated from the other discrete CdGM states exists ubiquitously in the cores of free vortices in the defect free regions of (Li0.84Fe0.16)OHFeSe, which has a superconducting transition temperature of 42 K. Moreover, a Dirac-cone-type surface state is observed by angle-resolved photoemission spectroscopy, and its topological nature is confirmed by band calculations. The observed ZBCP can be naturally attributed to a MZM arising from this chiral topological surface states of a bulk superconductor. (Li0.84Fe0.16)OHFeSe thus provides an ideal platform for studying MZMs and topological quantum computing.
139 - G. Yu , Y. Li , E. M. Motoyama 2008
We present an inelastic neutron scattering study of the structurally simple single-layer compound HgBa$_2$CuO$_{4+delta}$ close to optimal doping ($T_c approx 96$ K). A well-defined antiferromagnetic resonance with energy $omega_r = 56$ meV ($approx 6.8 k_BT_c$) is observed below the superconducting transition temperature $T_c$. The resonance mode is energy-resolution limited and exhibits an intrinsic momentum width of about $0.2 mathrm{mathring{A}^{-1}}$, consistent with prior work on several other cuprates. However, the unusually large value of the mode energy implies a non-universal relationship between $omega_r$ and $T_c$ across different families of cuprates.
We report an easy and versatile route for the synthesis of the parent phase of newest superconducting wonder material i.e. p-Terphenyl. Doped p-terphenyl has recently shown superconductivity with transition temperature as high as 120K. For crystal growth, the commercially available p-Terphenyl powder is pelletized, encapsulated in evacuated (10-4 Torr) quartz tube and subjected to high temperature (260C) melt followed by slow cooling at 5C/hour. Simple temperature controlled heating furnace is used during the process. The obtained crystal is one piece, shiny and plate like. Single crystal surface XRD (X-ray Diffraction) showed unidirectional (00l) lines, indicating that the crystal is grown along c-direction. Powder XRD of the specimen showed that as grown p-Terphenyl is crystallized in monoclinic structure with space group P21/a space group, having lattice parameters a = 8.08(2) A, b = 5.62(5) A and c= 13.58(3) A. Scanning electron microscopy (SEM) pictures of the crystal showed clear layered slab like growth without any visible contamination from oxygen. Characteristic reported Raman active modes related to C-C-C bending, C-H bending, C-C stretching and C-H stretching vibrations are seen clearly for the studied p-Terphenyl crystal. The physical properties of crystal are yet underway. The short letter reports an easy and versatile crystal growth method for obtaining quality p-terphenyl. The same growth method may probably be applied to doped p-terphenyl and to subsequently achieve superconductivity to the tune of as high 120K for the newest superconductivity wonder i.e., High Tc Oraganic Superconductor (HTOS).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا