No Arabic abstract
Leakage of polarized Galactic diffuse emission into total intensity can potentially mimic the 21-cm signal coming from the epoch of reionization (EoR), as both of them might have fluctuating spectral structure. Although we are sensitive to the EoR signal only in small fields of view, chromatic sidelobes from further away can contaminate the inner region. Here, we explore the effects of leakage into the EoR window of the cylindrically averaged power spectra (PS) within wide fields of view using both observation and simulation of the 3C196 and NCP fields, two observing fields of the LOFAR-EoR project. We present the polarization PS of two one-night observations of the two fields and find that the NCP field has higher fluctuations along frequency, and consequently exhibits more power at high-$k_parallel$ that could potentially leak to Stokes $I$. Subsequently, we simulate LOFAR observations of Galactic diffuse polarized emission based on a model to assess what fraction of polarized power leaks into Stokes $I$ because of the primary beam. We find that the rms fractional leakage over the instrumental $k$-space is $0.35%$ in the 3C196 field and $0.27%$ in the NCP field, and it does not change significantly within the diameters of $15^circ$, $9^circ$ and $4^circ$. Based on the observed PS and simulated fractional leakage, we show that a similar level of leakage into Stokes $I$ is expected in the 3C196 and NCP fields, and the leakage can be considered to be a bias in the PS.
Detection of the 21-cm signal coming from the epoch of reionization (EoR) is challenging especially because, even after removing the foregrounds, the residual Stokes $I$ maps contain leakage from polarized emission that can mimic the signal. Here, we discuss the instrumental polarization of LOFAR and present realistic simulations of the leakages between Stokes parameters. From the LOFAR observations of polarized emission in the 3C196 field, we have quantified the level of polarization leakage caused by the nominal model beam of LOFAR, and compared it with the EoR signal using power spectrum analysis. We found that at 134--166 MHz, within the central 4$^circ$ of the field the $(Q,U)rightarrow I$ leakage power is lower than the EoR signal at $k<0.3$ Mpc$^{-1}$. The leakage was found to be localized around a Faraday depth of 0, and the rms of the leakage as a fraction of the rms of the polarized emission was shown to vary between 0.2-0.3%, both of which could be utilized in the removal of leakage. Moreover, we could define an `EoR window in terms of the polarization leakage in the cylindrical power spectrum above the PSF-induced wedge and below $k_parallelsim 0.5$ Mpc$^{-1}$, and the window extended up to $k_parallelsim 1$ Mpc$^{-1}$ at all $k_perp$ when 70% of the leakage had been removed. These LOFAR results show that even a modest polarimetric calibration over a field of view of $lesssim 4^circ$ in the future arrays like SKA will ensure that the polarization leakage remains well below the expected EoR signal at the scales of 0.02-1 Mpc$^{-1}$.
Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of LOFAR in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C295 field. We have found that the model beam has errors of less than or equal to 10% on the predicted levels of leakage of ~1% within the field of view, i. e. if the leakage is taken out perfectly using this model the leakage will reduce to $10^{-3}$ of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.
Contamination due to foregrounds (Galactic and Extra-galactic), calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a pilot study of a field centered on 3C196 using LOFAR Low Band (56-70 MHz) observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork structure in the 2D power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon (EoR/CD window). We show that this structure largely arises due to strong instrumental polarization leakage ($sim30%$) towards {Cas,A} ($sim21$ kJy at 81 MHz, brightest source in northern sky), which is far away from primary field of view. We measure an extremely small ionospheric diffractive scale ($r_{text{diff}} approx 430$ m at 60 MHz) towards {Cas,A} resembling pure Kolmogorov turbulence compared to $r_{text{diff}} sim3 - 20$ km towards zenith at 150 MHz for typical ionospheric conditions. This is one of the smallest diffractive scales ever measured at these frequencies. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations (e.g. with SKA-low and HERA) in the same frequency window.
This paper explores the potential for statistical epoch of reionization (EOR) measurements using wide field radio observations. New developments in low frequency radio instrumentation and signal processing allow very sensitive EOR measurements, and the analysis techniques enabled by these advances offer natural ways of separating the EOR signal from the residual foreground emission. This paper introduces the enabling technologies and proposes an analysis technique designed to make optimal use of the capabilities of next generation low frequency radio arrays. The observations we propose can directly observe the power spectrum of the EOR using relatively short observations, and are significantly more sensitive than other techniques which have been discussed in the literature. For example, in the absence of foreground contamination the measurements we propose would produce five 3-sigma power spectrum points in 100 hours of observation with only 4 MHz bandwidth with LOFAR for simple models of the high redshift 21cm emission. The challenge of residual foreground removal may be addressed by the symmetries in the three-dimensional (two spatial frequencies and radiofrequency) radio interferometric data. These symmetries naturally separate the EOR signal from most classes of residual un-subtracted foreground contamination, including all foreground continuum sources and radio line emission from the Milky Way.
A major scientific goal of JWST is to probe the epoch of re-ionization of the Universe at z above 6, and up to 20 and beyond. At these redshifts, galaxies are just beginning to form and the observable objects are early black holes, supernovae, and cosmic infrared background. The JWST has the necessary sensitivity to observe these targets individually, but a public deep and wide science enabling survey in the wavelength range from 2-5 $mu$m is needed to discover these black holes and supernovae and to cover the area large enough for cosmic infrared background to be reliably studied. This enabling survey will also discover a large number of other transients and enable sciences such as supernova cosmology up to z $sim$ 5, star formation history at high redshift through supernova explosions, faint stellar objects in the Milky Way, and galaxy evolution up to z approaching 10. The results of this survey will also serve as an invaluable target feeder for the upcoming era of ELT and SKA.