Do you want to publish a course? Click here

Polarization leakage in Epoch of Reionization windows: I. LOFAR observations of the 3C196 field

337   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detection of the 21-cm signal coming from the epoch of reionization (EoR) is challenging especially because, even after removing the foregrounds, the residual Stokes $I$ maps contain leakage from polarized emission that can mimic the signal. Here, we discuss the instrumental polarization of LOFAR and present realistic simulations of the leakages between Stokes parameters. From the LOFAR observations of polarized emission in the 3C196 field, we have quantified the level of polarization leakage caused by the nominal model beam of LOFAR, and compared it with the EoR signal using power spectrum analysis. We found that at 134--166 MHz, within the central 4$^circ$ of the field the $(Q,U)rightarrow I$ leakage power is lower than the EoR signal at $k<0.3$ Mpc$^{-1}$. The leakage was found to be localized around a Faraday depth of 0, and the rms of the leakage as a fraction of the rms of the polarized emission was shown to vary between 0.2-0.3%, both of which could be utilized in the removal of leakage. Moreover, we could define an `EoR window in terms of the polarization leakage in the cylindrical power spectrum above the PSF-induced wedge and below $k_parallelsim 0.5$ Mpc$^{-1}$, and the window extended up to $k_parallelsim 1$ Mpc$^{-1}$ at all $k_perp$ when 70% of the leakage had been removed. These LOFAR results show that even a modest polarimetric calibration over a field of view of $lesssim 4^circ$ in the future arrays like SKA will ensure that the polarization leakage remains well below the expected EoR signal at the scales of 0.02-1 Mpc$^{-1}$.



rate research

Read More

This study aims to characterise the polarized foreground emission in the ELAIS-N1 field and to address its possible implications for the extraction of the cosmological 21-cm signal from the Low-Frequency Array - Epoch of Reionization (LOFAR-EoR) data. We use the high band antennas of LOFAR to image this region and RM-synthesis to unravel structures of polarized emission at high Galactic latitudes. The brightness temperature of the detected Galactic emission is on average 4 K in polarized intensity and covers the range from -10 to +13rad m^-2 in Faraday depth. The total polarized intensity and polarization angle show a wide range of morphological features. We have also used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. The LOFAR and WSRT images show a similar complex morphology, at comparable brightness levels, but their spatial correlation is very low. The fractional polarization at 150 MHz, expressed as a percentage of the total intensity, amounts to 1.5%. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies. The wide frequency range, good angular resolution and good sensitivity make LOFAR an exquisite instrument for studying Galactic polarized emission at a resolution of 1-2 rad m^-2 in Faraday depth. The different polarised patterns observed at 150 MHz and 350 MHz are consistent with different source distributions along the line of sight wring in a variety of Faraday thin regions of emission. The presence of polarised foregrounds is a serious complication for Epoch of Reionization experiments. To avoid the leakage of polarized emission into total intensity, which can depend on frequency, we need to calibrate the instrumental polarization across the field of view to a small fraction of 1%.
The aim of the LOFAR Epoch of Reionization (EoR) project is to detect the spectral fluctuations of the redshifted HI 21cm signal. This signal is weaker by several orders of magnitude than the astrophysical foreground signals and hence, in order to achieve this, very long integrations, accurate calibration for stations and ionosphere and reliable foreground removal are essential. One of the prospective observing windows for the LOFAR EoR project will be centered at the North Celestial Pole (NCP). We present results from observations of the NCP window using the LOFAR highband antenna (HBA) array in the frequency range 115 MHz to 163 MHz. The data were obtained in April 2011 during the commissioning phase of LOFAR. We used baselines up to about 30 km. With about 3 nights, of 6 hours each, effective integration we have achieved a noise level of about 100 microJy/PSF in the NCP window. Close to the NCP, the noise level increases to about 180 microJy/PSF, mainly due to additional contamination from unsubtracted nearby sources. We estimate that in our best night, we have reached a noise level only a factor of 1.4 above the thermal limit set by the noise from our Galaxy and the receivers. Our continuum images are several times deeper than have been achieved previously using the WSRT and GMRT arrays. We derive an analytical explanation for the excess noise that we believe to be mainly due to sources at large angular separation from the NCP.
62 - K. M. B. Asad (1 , 2 , 3 2017
Leakage of polarized Galactic diffuse emission into total intensity can potentially mimic the 21-cm signal coming from the epoch of reionization (EoR), as both of them might have fluctuating spectral structure. Although we are sensitive to the EoR signal only in small fields of view, chromatic sidelobes from further away can contaminate the inner region. Here, we explore the effects of leakage into the EoR window of the cylindrically averaged power spectra (PS) within wide fields of view using both observation and simulation of the 3C196 and NCP fields, two observing fields of the LOFAR-EoR project. We present the polarization PS of two one-night observations of the two fields and find that the NCP field has higher fluctuations along frequency, and consequently exhibits more power at high-$k_parallel$ that could potentially leak to Stokes $I$. Subsequently, we simulate LOFAR observations of Galactic diffuse polarized emission based on a model to assess what fraction of polarized power leaks into Stokes $I$ because of the primary beam. We find that the rms fractional leakage over the instrumental $k$-space is $0.35%$ in the 3C196 field and $0.27%$ in the NCP field, and it does not change significantly within the diameters of $15^circ$, $9^circ$ and $4^circ$. Based on the observed PS and simulated fractional leakage, we show that a similar level of leakage into Stokes $I$ is expected in the 3C196 and NCP fields, and the leakage can be considered to be a bias in the PS.
Leakage of diffuse polarized emission into Stokes I caused by the polarized primary beam of the instrument might mimic the spectral structure of the 21-cm signal coming from the epoch of reionization (EoR) making their separation difficult. Therefore, understanding polarimetric performance of the antenna is crucial for a successful detection of the EoR signal. Here, we have calculated the accuracy of the nominal model beam of LOFAR in predicting the leakage from Stokes I to Q, U by comparing them with the corresponding leakage of compact sources actually observed in the 3C295 field. We have found that the model beam has errors of less than or equal to 10% on the predicted levels of leakage of ~1% within the field of view, i. e. if the leakage is taken out perfectly using this model the leakage will reduce to $10^{-3}$ of the Stokes I flux. If similar levels of accuracy can be obtained in removing leakage from Stokes Q, U to I, we can say, based on the results of our previous paper, that the removal of this leakage using this beam model would ensure that the leakage is well below the expected EoR signal in almost the whole instrumental k-space of the cylindrical power spectrum. We have also shown here that direction dependent calibration can remove instrumentally polarized compact sources, given an unpolarized sky model, very close to the local noise level.
This study aims to characterize linear polarization structures in LOFAR observations of the interstellar medium (ISM) in the 3C196 field, one of the primary fields of the LOFAR-Epoch of Reionization key science project. We have used the high band antennas (HBA) of LOFAR to image this region and Rotation Measure (RM) synthesis to unravel the distribution of polarized structures in Faraday depth. The brightness temperature of the detected Galactic emission is $5-15~{rm K}$ in polarized intensity and covers the range from -3 to +8 ${rm rad~m^{-2}}$ in Faraday depth. The most interesting morphological feature is a strikingly straight filament at a Faraday depth of $+0.5~{rm rad~m^{-2}}$ running from north to south, right through the centre of the field and parallel to the Galactic plane. There is also an interesting system of linear depolarization canals conspicuous in an image showing the peaks of Faraday spectra. We used the Westerbork Synthesis Radio Telescope (WSRT) at 350 MHz to image the same region. For the first time, we see some common morphology in the RM cubes made at 150 and 350~{rm MHz}. There is no indication of diffuse emission in total intensity in the interferometric data, in line with results at higher frequencies and previous LOFAR observations. Based on our results, we determined physical parameters of the ISM and proposed a simple model that may explain the observed distribution of the intervening magneto-ionic medium. The mean line-of-sight magnetic field component, $B_parallel$, is determined to be $0.3pm0.1~{rm mu G}$ and its spatial variation across the 3C196 field is $0.1~{rm mu G}$. The filamentary structure is probably an ionized filament in the ISM, located somewhere within the Local Bubble. This filamentary structure shows an excess in thermal electron density ($n_e B_parallel>6.2~{rm cm^{-3}mu G}$) compared to its surroundings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا