No Arabic abstract
Contamination due to foregrounds (Galactic and Extra-galactic), calibration errors and ionospheric effects pose major challenges in detection of the cosmic 21 cm signal in various Epoch of Reionization (EoR) experiments. We present the results of a pilot study of a field centered on 3C196 using LOFAR Low Band (56-70 MHz) observations, where we quantify various wide field and calibration effects such as gain errors, polarized foregrounds, and ionospheric effects. We observe a `pitchfork structure in the 2D power spectrum of the polarized intensity in delay-baseline space, which leaks into the modes beyond the instrumental horizon (EoR/CD window). We show that this structure largely arises due to strong instrumental polarization leakage ($sim30%$) towards {Cas,A} ($sim21$ kJy at 81 MHz, brightest source in northern sky), which is far away from primary field of view. We measure an extremely small ionospheric diffractive scale ($r_{text{diff}} approx 430$ m at 60 MHz) towards {Cas,A} resembling pure Kolmogorov turbulence compared to $r_{text{diff}} sim3 - 20$ km towards zenith at 150 MHz for typical ionospheric conditions. This is one of the smallest diffractive scales ever measured at these frequencies. Our work provides insights in understanding the nature of aforementioned effects and mitigating them in future Cosmic Dawn observations (e.g. with SKA-low and HERA) in the same frequency window.
Leakage of polarized Galactic diffuse emission into total intensity can potentially mimic the 21-cm signal coming from the epoch of reionization (EoR), as both of them might have fluctuating spectral structure. Although we are sensitive to the EoR signal only in small fields of view, chromatic sidelobes from further away can contaminate the inner region. Here, we explore the effects of leakage into the EoR window of the cylindrically averaged power spectra (PS) within wide fields of view using both observation and simulation of the 3C196 and NCP fields, two observing fields of the LOFAR-EoR project. We present the polarization PS of two one-night observations of the two fields and find that the NCP field has higher fluctuations along frequency, and consequently exhibits more power at high-$k_parallel$ that could potentially leak to Stokes $I$. Subsequently, we simulate LOFAR observations of Galactic diffuse polarized emission based on a model to assess what fraction of polarized power leaks into Stokes $I$ because of the primary beam. We find that the rms fractional leakage over the instrumental $k$-space is $0.35%$ in the 3C196 field and $0.27%$ in the NCP field, and it does not change significantly within the diameters of $15^circ$, $9^circ$ and $4^circ$. Based on the observed PS and simulated fractional leakage, we show that a similar level of leakage into Stokes $I$ is expected in the 3C196 and NCP fields, and the leakage can be considered to be a bias in the PS.
Detection of 21~cm emission of HI from the epoch of reionization, at redshifts z>6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the HI signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the foreground wedge in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor ~100 with negligible loss of sensitivity.
LOFAR is the only radio telescope that is presently capable of high-sensitivity, high-resolution (<1 mJy/b and <15) observations at ultra-low frequencies (<100 MHz). To utilise these capabilities, the LOFAR Surveys Key Science Project is undertaking a large survey to cover the entire northern sky with Low Band Antenna (LBA) observations. The LOFAR LBA Sky Survey (LoLSS) aims to cover the entire northern sky with 3170 pointings in the frequency range 42-66 MHz, at a resolution of 15 arcsec and at a sensitivity of 1 mJy/b. Here we outline the survey strategy, the observational status, the current calibration techniques, and briefly describe several scientific motivations. We also describe the preliminary public data release. The preliminary images were produced using a fully automated pipeline that aims to correct all direction-independent effects in the data. Whilst the direction-dependent effects, such as those from the ionosphere, are not yet corrected, the images presented in this work are still 10 times more sensitive than previous surveys available at these low frequencies. The preliminary data release covers 740 sqdeg around the HETDEX spring field region at a resolution of 47 with a median noise level of 5 mJy/b. The images and the catalogue with 25,247 sources are publicly released. We demonstrate that the system is capable of reaching an rms noise of 1 mJy/b and the resolution of 15 once direction-dependent effects are corrected for. LoLSS will provide the ultra-low-frequency information for hundreds of thousands of radio sources, providing critical spectral information and producing a unique dataset that can be used for a wide range of science topics such as: the search for high redshift galaxies and quasars, the study of the magnetosphere of exoplanets, and the detection of the oldest populations of cosmic-rays in galaxies, clusters of galaxies, and from AGN activity.
The aimed high sensitivities and large fields of view of the new generation of interferometers impose to reach high dynamic range of order $sim$1:$10^6$ to 1:$10^8$ in the case of the Square Kilometer Array. The main problem is the calibration and correction of the Direction Dependent Effects (DDE) that can affect the electro-magnetic field (antenna beams, ionosphere, Faraday rotation, etc.). As shown earlier the A-Projection is a fast and accurate algorithm that can potentially correct for any given DDE in the imaging step. With its very wide field of view, low operating frequency ($sim30-250$ MHz), long baselines, and complex station-dependent beam patterns, the Low Frequency Array (LOFAR) is certainly the most complex SKA precursor. In this paper we present a few implementations of A-Projection applied to LOFAR that can deal with non-unitary station beams and non-diagonal Mueller matrices. The algorithm is designed to correct for all the DDE, including individual antenna, projection of the dipoles on the sky, beam forming and ionospheric effects. We describe a few important algorithmic optimizations related to LOFARs architecture allowing us to build a fast imager. Based on simulated datasets we show that A-Projection can give dramatic dynamic range improvement for both phased array beams and ionospheric effects. We will use this algorithm for the construction of the deepest extragalactic surveys, comprising hundreds of days of integration.
Detection of the 21-cm signal coming from the epoch of reionization (EoR) is challenging especially because, even after removing the foregrounds, the residual Stokes $I$ maps contain leakage from polarized emission that can mimic the signal. Here, we discuss the instrumental polarization of LOFAR and present realistic simulations of the leakages between Stokes parameters. From the LOFAR observations of polarized emission in the 3C196 field, we have quantified the level of polarization leakage caused by the nominal model beam of LOFAR, and compared it with the EoR signal using power spectrum analysis. We found that at 134--166 MHz, within the central 4$^circ$ of the field the $(Q,U)rightarrow I$ leakage power is lower than the EoR signal at $k<0.3$ Mpc$^{-1}$. The leakage was found to be localized around a Faraday depth of 0, and the rms of the leakage as a fraction of the rms of the polarized emission was shown to vary between 0.2-0.3%, both of which could be utilized in the removal of leakage. Moreover, we could define an `EoR window in terms of the polarization leakage in the cylindrical power spectrum above the PSF-induced wedge and below $k_parallelsim 0.5$ Mpc$^{-1}$, and the window extended up to $k_parallelsim 1$ Mpc$^{-1}$ at all $k_perp$ when 70% of the leakage had been removed. These LOFAR results show that even a modest polarimetric calibration over a field of view of $lesssim 4^circ$ in the future arrays like SKA will ensure that the polarization leakage remains well below the expected EoR signal at the scales of 0.02-1 Mpc$^{-1}$.