No Arabic abstract
Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lack of analytical solutions hinders the understanding of their many-body wave functions. Here we show that two kinds of SPT phases naturally arise for ultracold polar molecules confined in a zigzag optical lattice. This system, motivated by recent experiments, is described by a spin model whose exchange couplings can be tuned by an external field to reach parameter regions not studied before for spin chains or ladders. Within the enlarged parameter space, we find the ground state wave function can be obtained exactly along a line and at a special point, for these two phases respectively. These exact solutions provide a clear physical picture for the SPT phases and their edge excitations. We further obtain the phase diagram by using infinite time-evolving block decimation, and discuss the phase transitions between the two SPT phases and their experimental signatures.
The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.
Observation of topological phases beyond two-dimension (2D) has been an open challenge for ultracold atoms. Here, we realize for the first time a 3D spin-orbit coupled nodal-line semimetal in an optical lattice and observe the bulk line nodes with ultracold fermions. The realized topological semimetal exhibits an emergent magnetic group symmetry. This allows to detect the nodal lines by effectively reconstructing the 3D topological band from a series of measurements of integrated spin textures, which precisely render spin textures on the parameter-tuned magnetic-group-symmetric planes. The detection technique can be generally applied to explore 3D topological states of similar symmetries. Furthermore, we observe the band inversion lines from topological quench dynamics, which are bulk counterparts of Fermi arc states and connect the Dirac points, reconfirming the realized topological band. Our results demonstrate the first approach to effectively observe 3D band topology, and open the way to probe exotic topological physics for ultracold atoms in high dimensions.
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter. The paradigmatic model that has played an instrumental role in elucidating these effects is the antiferromagnetic spin-1 Haldane chain. Its ground state is a disordered state, with symmetry-protected fourfold-degenerate edge states due to fractional spin excitations. In the bulk, it is characterised by vanishing two-point spin correlations, gapped excitations, and a characteristic non-local order parameter. More recently it was understood that the Haldane chain forms a specific example of a more general classification scheme of symmetry protected topological (SPT) phases of matter that is based on ideas connecting to quantum information and entanglement. Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator. We directly reveal both edge and bulk properties of the system through the use of single-site and particle-resolved measurements as well as non-local correlation functions. Continuously changing the Hubbard interaction strength of the system allows us to investigate the robustness of the phase to charge (density) fluctuations far from the regime of the Heisenberg model employing a novel correlator.
We present a quantitative, near-term experimental blueprint for the quantum simulation of topological insulators using lattice-trapped ultracold polar molecules. In particular, we focus on the so-called Hopf insulator, which represents a three-dimensional topological state of matter existing outside the conventional tenfold way and crystalline-symmetry-based classifications of topological insulators. Its topology is protected by a emph{linking number} invariant, which necessitates long-range spin-orbit coupled hoppings for its realization. While these ingredients have so far precluded its realization in solid state systems and other quantum simulation architectures, in a companion manuscript [1901.08597] we predict that Hopf insulators can in fact arise naturally in dipolar interacting systems. Here, we investigate a specific such architecture in lattices of polar molecules, where the effective `spin is formed from sublattice degrees of freedom. We introduce two techniques that allow one to optimize dipolar Hopf insulators with large band gaps, and which should also be readily applicable to the simulation of other exotic bandstructures. First, we describe the use of Floquet engineering to control the range and functional form of dipolar hoppings and second, we demonstrate that molecular AC polarizabilities (under circularly polarized light) can be used to precisely tune the resonance condition between different rotational states. To verify that this latter technique is amenable to current generation experiments, we calculate from first principles the AC polarizability for $sigma^+$ light for ${}^{40}$K$^{87}$Rb. Finally, we show that experiments are capable of detecting the unconventional topology of the Hopf insulator by varying the termination of the lattice at its edges, which gives rise to three distinct classes of edge mode spectra.