Do you want to publish a course? Click here

Exactly Solvable Points and Symmetry-Protected Topological Phases of Quantum Spins on a Zig-Zag Lattice

122   0   0.0 ( 0 )
 Added by Haiyuan Zou
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A large number of symmetry-protected topological (SPT) phases have been hypothesized for strongly interacting spin-1/2 systems in one dimension. Realizing these SPT phases, however, often demands fine-tunings hard to reach experimentally. And the lack of analytical solutions hinders the understanding of their many-body wave functions. Here we show that two kinds of SPT phases naturally arise for ultracold polar molecules confined in a zigzag optical lattice. This system, motivated by recent experiments, is described by a spin model whose exchange couplings can be tuned by an external field to reach parameter regions not studied before for spin chains or ladders. Within the enlarged parameter space, we find the ground state wave function can be obtained exactly along a line and at a special point, for these two phases respectively. These exact solutions provide a clear physical picture for the SPT phases and their edge excitations. We further obtain the phase diagram by using infinite time-evolving block decimation, and discuss the phase transitions between the two SPT phases and their experimental signatures.



rate research

Read More

Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes. The observed SPT band can be protected by a magnetic group and a nonlocal chiral symmetry, with the band topology being measured via Bloch states at symmetric momenta. The topology also resides in far-from-equilibrium spin dynamics, which are predicted and observed in experiment to exhibit qualitatively distinct behaviors in quenching to trivial and nontrivial regimes, revealing two fundamental types of spin-relaxation dynamics related to bulk topology. This work opens the way to expanding the scope of SPT physics with ultracold atoms and studying nonequilibrium quantum dynamics in these exotic systems.
149 - Qing-Rui Wang , Meng Cheng 2021
We propose a general construction of commuting projector lattice models for 2D and 3D topological phases enriched by U(1) symmetry, with finite-dimensional Hilbert space per site. The construction starts from a commuting projector model of the topological phase and decorates U(1) charges to the state space in a consistent manner. We show that all 2D U(1) symmetry-enriched topological phases which allow gapped boundary without breaking symmetry, can be realized through our construction. We also construct a large class of 3D topological phases with U(1) symmetry fractionalized on particles or loop excitations.
We show how to compute the exact partition function for lattice statistical-mechanical models whose Boltzmann weights obey a special crossing symmetry. The crossing symmetry equates partition functions on different trivalent graphs, allowing a transformation to a graph where the partition function is easily computed. The simplest example is counting the number of nets without ends on the honeycomb lattice, including a weight per branching. Other examples include an Ising model on the Kagome lattice with three-spin interactions, dimers on any graph of corner-sharing triangles, and non-crossing loops on the honeycomb lattice, where multiple loops on each edge are allowed. We give several methods for obtaining models with this crossing symmetry, one utilizing discrete groups and another anyon fusion rules. We also present results indicating that for models which deviate slightly from having crossing symmetry, a real-space decimation (renormalization-group-like) procedure restores the crossing symmetry.
Symmetry is fundamental to topological phases. In the presence of a gauge field, spatial symmetries will be projectively represented, which may alter their algebraic structure and generate novel topological phases. We show that the $mathbb{Z}_2$ projectively represented translational symmetry operators adopt a distinct commutation relation, and become momentum dependent analogous to twofold nonsymmorphic symmetries. Combined with other internal or external symmetries, they give rise to many exotic band topology, such as the degeneracy over the whole boundary of the Brillouin zone, the single fourfold Dirac point pinned at the Brillouin zone corner, and the Kramers degeneracy at every momentum point. Intriguingly, the Dirac point criticality can be lifted by breaking one primitive translation, resulting in a topological insulator phase, where the edge bands have a M{o}bius twist. Our work opens a new arena of research for exploring topological phases protected by projectively represented space groups.
We analyze the zero-temperature phases of an array of neutral atoms on the kagome lattice, interacting via laser excitation to atomic Rydberg states. Density-matrix renormalization group calculations reveal the presence of a wide variety of complex solid phases with broken lattice symmetries. In addition, we identify a novel regime with dense Rydberg excitations that has a large entanglement entropy and no local order parameter associated with lattice symmetries. From a mapping to the triangular lattice quantum dimer model, and theories of quantum phase transitions out of the proximate solid phases, we argue that this regime could contain one or more phases with topological order. Our results provide the foundation for theoretical and experimental explorations of crystalline and liquid states using programmable quantum simulators based on Rydberg atom arrays.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا