Do you want to publish a course? Click here

Short-range quantum magnetism of ultracold fermions in an optical lattice

139   0   0.0 ( 0 )
 Added by Daniel Greif
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exchange coupling between quantum mechanical spins lies at the origin of quantum magnetism. We report on the observation of nearest-neighbor magnetic spin correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy within the lattice structure. This is achieved in a tunable-geometry optical lattice, which also enables the detection of the magnetic correlations. We load a low-temperature two-component Fermi gas with repulsive interactions into either a dimerized or an anisotropic simple cubic lattice. For both systems the correlations manifest as an excess number of singlets as compared to triplets consisting of two atoms with opposite spins. For the anisotropic lattice, we determine the transverse spin correlator from the singlet-triplet imbalance and observe antiferromagnetic correlations along one spatial axis. Our work paves the way for addressing open problems in quantum magnetism using ultracold fermions in optical lattices as quantum simulators.



rate research

Read More

89 - Bo Song , Chengdong He , Sen Niu 2018
Observation of topological phases beyond two-dimension (2D) has been an open challenge for ultracold atoms. Here, we realize for the first time a 3D spin-orbit coupled nodal-line semimetal in an optical lattice and observe the bulk line nodes with ultracold fermions. The realized topological semimetal exhibits an emergent magnetic group symmetry. This allows to detect the nodal lines by effectively reconstructing the 3D topological band from a series of measurements of integrated spin textures, which precisely render spin textures on the parameter-tuned magnetic-group-symmetric planes. The detection technique can be generally applied to explore 3D topological states of similar symmetries. Furthermore, we observe the band inversion lines from topological quench dynamics, which are bulk counterparts of Fermi arc states and connect the Dirac points, reconfirming the realized topological band. Our results demonstrate the first approach to effectively observe 3D band topology, and open the way to probe exotic topological physics for ultracold atoms in high dimensions.
147 - K. Sengupta 2021
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt. We begin with a brief summary of the possible experimental setup for generating the tilt. This is followed by a discussion of the effective low-energy model for these systems and its equilibrium phases. We also chart the relation of this model to the recently studied system of ultracold Rydberg atoms. Next, we discuss the non-equilibrium dynamics of this model for quench, ramp and periodic protocols with emphasis on the periodic drive which can be understood in terms of an analytic, albeit perturbative, Floquet Hamiltonian derived using Floquet perturbation theory (FPT). Finally, taking cue from the Floquet Hamiltonian of the periodically driven tilted boson chain, we discuss a spin model which exhibits Hilbert space fragmentation and exact dynamical freezing for wide range of initial states.
We show that, for fermionic atoms in a one-dimensional optical lattice, the fraction of atoms in doubly occupied sites is a highly non-monotonic function of temperature. We demonstrate that this property persists even in the presence of realistic harmonic confinement, and that it leads to a suppression of entropy at intermediate temperatures that offers a route to adiabatic cooling. Our interpretation of the suppression is that such intermediate temperatures are simultaneously too high for quantum coherence and too low for significant thermal excitation of double occupancy thus offering a clear indicator of the onset of quantum fluctuations.
This article gives an introduction to the realization of effective quantum magnetism with ultracold molecules in an optical lattice, reviews experimental and theoretical progress, and highlights future opportunities opened up by ongoing experiments. Ultracold molecules offer capabilities that are otherwise difficult or impossible to achieve in other effective spin systems, such as long-ranged spin-spin interactions with controllable degrees of spatial and spin anisotropy and favorable energy scales. Realizing quantum magnetism with ultracold molecules provides access to rich many-body behaviors, including many exotic phases of matter and interesting excitations and dynamics. Far-from-equilibrium dynamics plays a key role in our exposition, just as it did in recent ultracold molecule experiments realizing effective quantum magnetism. In particular, we show that dynamical probes allow the observation of correlated many-body spin physics, even in polar molecule gases that are not quantum degenerate. After describing how quantum magnetism arises in ultracold molecules and discussing recent observations of quantum magnetism with polar molecules, we survey prospects for the future, ranging from immediate goals to long-term visions.
Correlations between particles can lead to subtle and sometimes counterintuitive phenomena. We analyze one such case, occurring during the sudden expansion of fermions in a lattice when the initial state has a strong admixture of double occupancies. We promote the notion of quantum distillation: during the expansion, and in the presence of strongly repulsive interactions, doublons group together, forming a nearly ideal band insulator, which is metastable with a low entropy. We propose that this effect could be used for cooling purposes in experiments with two-component Fermi gases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا