Do you want to publish a course? Click here

Selling Complementary Goods: Dynamics, Efficiency and Revenue

428   0   0.0 ( 0 )
 Added by Liad Blumrosen
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We consider a price competition between two sellers of perfect-complement goods. Each seller posts a price for the good it sells, but the demand is determined according to the sum of prices. This is a classic model by Cournot (1838), who showed that in this setting a monopoly that sells both goods is better for the society than two competing sellers. We show that non-trivial pure Nash equilibria always exist in this game. We also quantify Cournots observation with respect to both the optimal welfare and the monopoly revenue. We then prove a series of mostly negative results regarding the convergence of best response dynamics to equilibria in such games.



rate research

Read More

We study the dynamic pricing problem faced by a monopolistic retailer who sells a storable product to forward-looking consumers. In this framework, the two major pricing policies (or mechanisms) studied in the literature are the preannounced (commitment) pricing policy and the contingent (threat or history dependent) pricing policy. We analyse and compare these pricing policies in the setting where the good can be purchased along a finite time horizon in indivisible atomic quantities. First, we show that, given linear storage costs, the retailer can compute an optimal preannounced pricing policy in polynomial time by solving a dynamic program. Moreover, under such a policy, we show that consumers do not need to store units in order to anticipate price rises. Second, under the contingent pricing policy rather than the preannounced pricing mechanism, (i) prices could be lower, (ii) retailer revenues could be higher, and (iii) consumer surplus could be higher. This result is surprising, in that these three facts are in complete contrast to the case of a retailer selling divisible storable goods Dudine et al. (2006). Third, we quantify exactly how much more profitable a contingent policy could be with respect to a preannounced policy. Specifically, for a market with $N$ consumers, a contingent policy can produce a multiplicative factor of $Omega(log N)$ more revenues than a preannounced policy, and this bound is tight.
We consider a monopoly information holder selling information to a budget-constrained decision maker, who may benefit from the sellers information. The decision maker has a utility function that depends on his action and an uncertain state of the world. The seller and the buyer each observe a private signal regarding the state of the world, which may be correlated with each other. The sellers goal is to sell her private information to the buyer and extract maximum possible revenue, subject to the buyers budget constraints. We consider three different settings with increasing generality, i.e., the sellers signal and the buyers signal can be independent, correlated, or follow a general distribution accessed through a black-box sampling oracle. For each setting, we design information selling mechanisms which are both optimal and simple in the sense that they can be naturally interpreted, have succinct representations, and can be efficiently computed. Notably, though the optimal mechanism exhibits slightly increasing complexity as the setting becomes more general, all our mechanisms share the same format of acting as a consultant who recommends the best action to the buyer but uses different and carefully designed payment rules for different settings. Each of our optimal mechanisms can be easily computed by solving a single polynomial-size linear program. This significantly simplifies exponential-size LPs solved by the Ellipsoid method in the previous work, which computes the optimal mechanisms in the same setting but without budget limit. Such simplification is enabled by our new characterizations of the optimal mechanism in the (more realistic) budget-constrained setting.
We analyze the revenue loss due to market shrinkage. Specifically, consider a simple market with one item for sale and $n$ bidders whose values are drawn from some joint distribution. Suppose that the market shrinks as a single bidder retires from the market. Suppose furthermore that the value of this retiring bidder is fixed and always strictly smaller than the values of the other players. We show that even this slight decrease in competition might cause a significant fall of a multiplicative factor of $frac{1}{e+1}approx0.268$ in the revenue that can be obtained by a dominant strategy ex-post individually rational mechanism. In particular, our results imply a solution to an open question that was posed by Dobzinski, Fu, and Kleinberg [STOC11].
We investigate revenue guarantees for auction mechanisms in a model where a distribution is specified for each bidder, but only some of the distributions are correct. The subset of bidders whose distribution is correctly specified (henceforth, the green bidders) is unknown to the auctioneer. The question we address is whether the auctioneer can run a mechanism that is guaranteed to obtain at least as much revenue, in expectation, as would be obtained by running an optimal mechanism on the green bidders only. For single-parameter feasibility environments, we find that the answer depends on the feasibility constraint. For matroid environments, running the optimal mechanism using all the specified distributions (including the incorrect ones) guarantees at least as much revenue in expectation as running the optimal mechanism on the green bidders. For any feasibility constraint that is not a matroid, there exists a way of setting the specified distributions and the true distributions such that the opposite conclusion holds.
We study equilibria of markets with $m$ heterogeneous indivisible goods and $n$ consumers with combinatorial preferences. It is well known that a competitive equilibrium is not guaranteed to exist when valuations are not gross substitutes. Given the widespread use of bundling in real-life markets, we study its role as a stabilizing and coordinating device by considering the notion of emph{competitive bundling equilibrium}: a competitive equilibrium over the market induced by partitioning the goods for sale into fixed bundles. Compared to other equilibrium concepts involving bundles, this notion has the advantage of simulatneous succinctness ($O(m)$ prices) and market clearance. Our first set of results concern welfare guarantees. We show that in markets where consumers care only about the number of goods they receive (known as multi-unit or homogeneous markets), even in the presence of complementarities, there always exists a competitive bundling equilibrium that guarantees a logarithmic fraction of the optimal welfare, and this guarantee is tight. We also establish non-trivial welfare guarantees for general markets, two-consumer markets, and markets where the consumer valuations are additive up to a fixed budget (budget-additive). Our second set of results concern revenue guarantees. Motivated by the fact that the revenue extracted in a standard competitive equilibrium may be zero (even with simple unit-demand consumers), we show that for natural subclasses of gross substitutes valuations, there always exists a competitive bundling equilibrium that extracts a logarithmic fraction of the optimal welfare, and this guarantee is tight. The notion of competitive bundling equilibrium can thus be useful even in markets which possess a standard competitive equilibrium.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا