Do you want to publish a course? Click here

Revenue Loss in Shrinking Markets

60   0   0.0 ( 0 )
 Added by Shahar Dobzinski
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We analyze the revenue loss due to market shrinkage. Specifically, consider a simple market with one item for sale and $n$ bidders whose values are drawn from some joint distribution. Suppose that the market shrinks as a single bidder retires from the market. Suppose furthermore that the value of this retiring bidder is fixed and always strictly smaller than the values of the other players. We show that even this slight decrease in competition might cause a significant fall of a multiplicative factor of $frac{1}{e+1}approx0.268$ in the revenue that can be obtained by a dominant strategy ex-post individually rational mechanism. In particular, our results imply a solution to an open question that was posed by Dobzinski, Fu, and Kleinberg [STOC11].



rate research

Read More

We investigate revenue guarantees for auction mechanisms in a model where a distribution is specified for each bidder, but only some of the distributions are correct. The subset of bidders whose distribution is correctly specified (henceforth, the green bidders) is unknown to the auctioneer. The question we address is whether the auctioneer can run a mechanism that is guaranteed to obtain at least as much revenue, in expectation, as would be obtained by running an optimal mechanism on the green bidders only. For single-parameter feasibility environments, we find that the answer depends on the feasibility constraint. For matroid environments, running the optimal mechanism using all the specified distributions (including the incorrect ones) guarantees at least as much revenue in expectation as running the optimal mechanism on the green bidders. For any feasibility constraint that is not a matroid, there exists a way of setting the specified distributions and the true distributions such that the opposite conclusion holds.
We present a polynomial-time algorithm that, given samples from the unknown valuation distribution of each bidder, learns an auction that approximately maximizes the auctioneers revenue in a variety of single-parameter auction environments including matroid environments, position environments, and the public project environment. The valuation distributions may be arbitrary bounded distributions (in particular, they may be irregular, and may differ for the various bidders), thus resolving a problem left open by previous papers. The analysis uses basic tools, is performed in its entirety in value-space, and simplifies the analysis of previously known results for special cases. Furthermore, the analysis extends to certain single-parameter auction environments where precise revenue maximization is known to be intractable, such as knapsack environments.
Consider a monopolist selling $n$ items to an additive buyer whose item values are drawn from independent distributions $F_1,F_2,ldots,F_n$ possibly having unbounded support. Unlike in the single-item case, it is well known that the revenue-optimal selling mechanism (a pricing scheme) may be complex, sometimes requiring a continuum of menu entries. Also known is that simple mechanisms with a bounded number of menu entries can extract a constant fraction of the optimal revenue. Nonetheless, whether an arbitrarily high fraction of the optimal revenue can be extracted via a bounded menu size remained open. We give an affirmative answer: for every $n$ and $varepsilon>0$, there exists $C=C(n,varepsilon)$ s.t. mechanisms of menu size at most $C$ suffice for obtaining $(1-varepsilon)$ of the optimal revenue from any $F_1,ldots,F_n$. We prove upper and lower bounds on the revenue-approximation complexity $C(n,varepsilon)$ and on the deterministic communication complexity required to run a mechanism achieving such an approximation.
Most work in mechanism design assumes that buyers are risk neutral; some considers risk aversion arising due to a non-linear utility for money. Yet behavioral studies have established that real agents exhibit risk attitudes which cannot be captured by any expected utility model. We initiate the study of revenue-optimal mechanisms under buyer behavioral models beyond expected utility theory. We adopt a model from prospect theory which arose to explain these discrepancies and incorporates agents under-weighting uncertain outcomes. In our model, an event occurring with probability $x < 1$ is worth strictly less to the agent than $x$ times the value of the event when it occurs with certainty. In contrast to the risk-neutral setting, the optimal mechanism may be randomized and appears challenging to find, even for a single buyer and a single item for sale. Nevertheless, we give a characterization of the optimal mechanism which enables positive approximation results. In particular, we show that under a reasonable bounded-risk-aversion assumption, posted pricing obtains a constant approximation. Notably, this result is risk-robust in that it does not depend on the details of the buyers risk attitude. Finally, we examine a dynamic setting in which the buyer is uncertain about his future value. In contrast to positive results for a risk-neutral buyer, we show that the buyers risk aversion may prevent the seller from approximating the optimal revenue in a risk-robust manner.
We consider a price competition between two sellers of perfect-complement goods. Each seller posts a price for the good it sells, but the demand is determined according to the sum of prices. This is a classic model by Cournot (1838), who showed that in this setting a monopoly that sells both goods is better for the society than two competing sellers. We show that non-trivial pure Nash equilibria always exist in this game. We also quantify Cournots observation with respect to both the optimal welfare and the monopoly revenue. We then prove a series of mostly negative results regarding the convergence of best response dynamics to equilibria in such games.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا