Do you want to publish a course? Click here

Role of sonication pre-treatment and cation valence in nano-cellulose suspensions sol-gel transition

132   0   0.0 ( 0 )
 Added by Paolo Bettotti
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sol-gel transition of carboxylated cellulose nanocrystals is investigated using rheology, SAXS, NMR and optical spectroscopies to unveil the distinctive roles of ultrasounds treatment and ions addition. Besides cellulose fibers fragmentation, sonication treatment induces fast gelling of the solution. Gelation is induced independently on the addition of cations, while the final rheological properties are highly influenced by the type, the concentration as well as on the sequence of the operations since salts must be added before sonication to produce stiff gels. Cations with various charge and dimension have been associated to ultrasounds to induce gelation and the gel elastic modulus increase proportionally with the charge over the ion size ratio. SAXS analysis of the Na+ hydrogel and Ca2+ hydrogel to which the ion was added after sonication shows the presence of structurally ordered domains where water is confined as indicated by 1H-NMR investigation of the dynamic of water exchange in the hydrogels. Conversely, separated phases containing essentially free water, characterize the hydrogels obtained by sonication after Ca2+ addition, confirming that this ion induces irreversible fiber aggregation. The rheological properties of the hydrogels depend on the duration of the ultrasound treatment and it enables the design of materials programmed with tailored energy dissipation response.



rate research

Read More

The evolution of viscoelastic properties near the sol-gel transition is studied by performing oscillatory rheological measurements on two different types of systems: a colloidal dispersion and a thermo-responsive polymer solution under isothermal and non-isothermal conditions. While undergoing sol-gel transition, both the systems pass through a critical point. An approach to the critical point is characterized in terms of divergence of zero shear viscosity and the subsequent appearance of the low frequency modulus. In the vicinity of the critical gel state, both the viscosity and the modulus show a power-law dependence on relative distance from the critical point. Interestingly, the longest relaxation time has been observed to diverge symmetrically on both the sides of the critical point and also shows a power-law dependence on relative distance from the critical point. The critical (power-law) exponents of the zero-shear viscosity and modulus are observed to be related to the exponents of the longest relaxation time by the hyper scaling laws. The dynamic critical exponent has also been calculated from the growth of the dynamic moduli. Remarkably, the critical relaxation exponent and dynamic critical exponent predicted from the scaling laws precisely agree with the experimental values from the isothermal as well as non-isothermal experiments. The associated critical exponents show remarkable internal consistency and universality for different kinds of systems undergoing the sol-gel transition.
High-entropy perovskite thin films, as the prototypical representative of the high-entropy oxides with novel electrical and magnetic features, have recently attracted great attention. Here, we reported the electronic structure and charge transport properties of sol-gel-derived high-entropy Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3 thin films annealed at various temperatures. By means of X-ray photoelectron spectroscopy and absorption spectrum, it is found that the conduction-band-minimum shifts downward and the valence-band-maximum shifts upward with the increase of annealing temperature, leading to the narrowed band gap. Electrical resistance measurements confirmed a semiconductor-like behavior for all the thin films. Two charge transport mechanisms, i.e., the thermally-activated transport mechanism at high temperatures and the activation-less transport mechanism at low temperatures, are identified by a self-consistent analysis method. These findings provide a critical insight into the electronic band structure and charge transport behavior of Ba(Zr0.2Sn0.2Ti0.2Hf0.2Nb0.2)O3, validating it as a compelling high-entropy oxide material for future electronic/energy-related technologies.
Polycrystalline Yb substituted NiZn nanoferrites with the compositions of Ni0.5Zn0.5YbxFe2-xO4 (x= 0.00, 0.04, 0.08, 0.12, 0.16 and 0.20) have been synthesized using sol gel auto combustion technique. Single phase cubic spinel structure has been confirmed by the X ray diffraction (XRD) patterns. Larger lattice constants of the compositions are found with increasing Yb3+ concentration while the average grain size (52 to 18 nm) has noticeable decrease as Yb3+ content is increased. The presence of all existing elements as well as the purity of the samples has also been confirmed from energy dispersive X ray spectroscopic (EDS) analysis. Frequency dependent dielectric constant, dielectric loss, dielectric relaxation time, AC and DC resistivity of the compositions have also been examined at room temperature. The DC resistivity value is found in the order of 10 to power 10 (omega-cm) which is at least four orders greater than the ferrites prepared by conventional method. This larger value of resistivity attributes due to very small grain size and successfully explained using the Verwey and deBoer hopping conduction model. The contribution of grain and grain boundary resistance has been elucidated using Cole Cole plot. The study of temperature dependent DC resistivity confirms the semiconducting nature of all titled compositions wherein bandgap (optical) increases from 2.73 eV to 3.25 eV with the increase of Yb content. The high value of resistivity is of notable achievement for the compositions that make them a potential candidate for implication in the high frequency applications where reduction of eddy current loss is highly required.
62 - J. Lao 2006
It is proposed in this study to observe the influence of P2O5 on the formation of the apatite-like layer in a bioactive glass via a complete PIXE characterization. A glass in the SiO2-CaO-P2O5 ternary system was elaborated by sol-gel processing. Glass samples were soaked in biological fluids for periods up to 10 days. The surface changes were characterized using Particle Induced X-ray Emission (PIXE) associated to Rutherford Backscattering Spectroscopy (RBS), which are efficient methods for multielemental analysis. Elemental maps of major and trace elements were obtained at a micrometer scale and revealed the bone bonding ability of the material. The formation of a calcium phosphate-rich layer containing magnesium occurs after a few days of interaction. We demonstrate that the presence of phosphorus in the material has an impact on the development and the formation rate of the bone-like apatite layer. Indeed, the Ca/P atomic ratio at the glass/biological fluids interface is closer to the nominal value of pure apatite compared to P2O5 free glasses. It would permit, in vivo, an improved chemical bond between the biomaterials and bone.
We report the development of indium oxide (In2O3) transistors via a single step laser-induced photochemical conversion process of a sol-gel metal oxide precursor. Through careful optimization of the laser annealing conditions we demonstrated successful conversion of the precursor to In2O3 and its subsequent implementation in n-channel transistors with electron mobility up to 13 cm2/Vs. Importantly, the process does not require thermal annealing making it compatible with temperature sensitive materials such as plastic. On the other hand, the spatial conversion/densification of the sol-gel layer eliminates additional process steps associated with semiconductor patterning and hence significantly reduces fabrication complexity and cost. Our work demonstrates unambiguously that laser-induced photochemical conversion of sol-gel metal oxide precursors can be rapid and compatible with large-area electronics manufacturing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا