No Arabic abstract
We continue the study of the nonrelativistic short-distance completions of a naturally light Higgs, focusing on the interplay between the gauge symmetries and the polynomial shift symmetries. We investigate the naturalness of nonrelativistic scalar quantum electrodynamics with a dynamical critical exponent $z=3$ by computing leading power law divergences to the scalar propagator in this theory. We find that power law divergences exhibit a more refined structure in theories that lack boost symmetries. Finally, in this toy model, we show that it is possible to preserve a fairly large hierarchy between the scalar mass and the high energy naturalness scale across 7 orders of magnitude, while accommodating a gauge coupling of order 0.1.
Nonrelativistic scalar field theories can exhibit a natural cascading hierarchy of scales, protected by a hierarchy of polynomial shift symmetries. Using a simple model, we argue that a high-energy cross-over to such nonrelativistic behavior naturally leads to light scalars, and thus represents a useful ingredient for technically natural resolutions of scalar mass hierarchies, perhaps even the Higgs mass hierarchy puzzle.
We examine the mechanical matrix model that can be derived from the SU(2) Yang-Mills light-cone field theory by restricting the gauge fields to depend on the light-cone time alone. We use Diracs generalized Hamiltonian approach. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills mechanics has in addition to the constraints, generating the SU(2) gauge transformations, the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. It is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics. Considering the complex solutions to the second class constraints we show at this time that the unconstrained Hamiltonian system represents the well-known model of conformal mechanics with a ``strength of the inverse square interaction determined by the value of the gauge field spin.
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well with preceding findings in literature but here we derive it analytically from the theory without further assumptions. The string tension is in strict agreement with lattice results and the well-known theoretical result by Karabali-Kim-Nair analysis. Classical solutions depend on a dimensionless numerical factor arising from integration. This factor enters into the determination of the spectrum and has been arbitrarily introduced in some theoretical models. We derive it directly from the solutions of the theory and is now fully justified. The agreement obtained with the lattice results for the ground state of the theory is well below 1% at any value of the degree of the group.
This work presents concisely the results obtained from the analysis of the two-point function of the gauge field in the $SU(2)$ and $SU(2)times U(1)$ gauge theories, in the Landau gauge, coupled to a scalar Higgs field in the fundamental or adjoint representation. Non-perturbative effects are considered by taking into account the Gribov ambiguity. In general, in both Yang-Mills models the gluon propagator has non-trivial contributions of physical and non-physical modes, which clearly depends on the group representation of the Higgs field. These results were presented during the Fourth Winter Workshop on Non-perturbative Quantum Field Theory, which took place in Sophia-Antipolis - France.
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of restricted Schur polynomials with $psim O(1)$ long rows or columns. In the same way that the operator mixing problem in the planar limit can be mapped to an integrable spin chain, we find that our problem maps to particles hopping on a lattice. The detailed form of the model is in precise agreement with the expected world volume dynamics of $p$ giant graviton branes, which is a U$(p)$ Yang-Mills theory. The lattice model we find has a number of noteworthy features. It is a lattice model with all-to-all sites interactions and quenched disorder.