Do you want to publish a course? Click here

Confinement interpretation in a Yang-Mills + Higgs theory when considering Gribovs ambiguity

101   0   0.0 ( 0 )
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

This work presents concisely the results obtained from the analysis of the two-point function of the gauge field in the $SU(2)$ and $SU(2)times U(1)$ gauge theories, in the Landau gauge, coupled to a scalar Higgs field in the fundamental or adjoint representation. Non-perturbative effects are considered by taking into account the Gribov ambiguity. In general, in both Yang-Mills models the gluon propagator has non-trivial contributions of physical and non-physical modes, which clearly depends on the group representation of the Higgs field. These results were presented during the Fourth Winter Workshop on Non-perturbative Quantum Field Theory, which took place in Sophia-Antipolis - France.



rate research

Read More

98 - Marco Frasca 2016
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well with preceding findings in literature but here we derive it analytically from the theory without further assumptions. The string tension is in strict agreement with lattice results and the well-known theoretical result by Karabali-Kim-Nair analysis. Classical solutions depend on a dimensionless numerical factor arising from integration. This factor enters into the determination of the spectrum and has been arbitrarily introduced in some theoretical models. We derive it directly from the solutions of the theory and is now fully justified. The agreement obtained with the lattice results for the ground state of the theory is well below 1% at any value of the degree of the group.
A microscopic description of vacuum structure and color singlet quantum states in Yang-Mills theory is presented. Our approach is based on an idea that classical stationary solutions defining a Hilbert space of one particle quantum states possess quantum stability and symmetry under Weyl color group transformations. We demonstrate that Weyl symmetry and stability condition provide color singlet states and reveals the origin of color confinement in $SU(3)$ quantum Yang-Mills theory.
We continue the study of the nonrelativistic short-distance completions of a naturally light Higgs, focusing on the interplay between the gauge symmetries and the polynomial shift symmetries. We investigate the naturalness of nonrelativistic scalar quantum electrodynamics with a dynamical critical exponent $z=3$ by computing leading power law divergences to the scalar propagator in this theory. We find that power law divergences exhibit a more refined structure in theories that lack boost symmetries. Finally, in this toy model, we show that it is possible to preserve a fairly large hierarchy between the scalar mass and the high energy naturalness scale across 7 orders of magnitude, while accommodating a gauge coupling of order 0.1.
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of restricted Schur polynomials with $psim O(1)$ long rows or columns. In the same way that the operator mixing problem in the planar limit can be mapped to an integrable spin chain, we find that our problem maps to particles hopping on a lattice. The detailed form of the model is in precise agreement with the expected world volume dynamics of $p$ giant graviton branes, which is a U$(p)$ Yang-Mills theory. The lattice model we find has a number of noteworthy features. It is a lattice model with all-to-all sites interactions and quenched disorder.
68 - Peter Austing 2001
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In both the Yang-Mills and cohomological formulations, we find all quantities which are invariant under the supercharges. Finally, we apply the deformation method of Moore, Nekrasov and Shatashvili directly to the Yang-Mills model. We find a deformation of the action which generates mass terms for all the matrix fields whilst preserving some supersymmetry. This allows us to rigorously integrate over a BRST quartet and arrive at the well known formula of MNS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا