Do you want to publish a course? Click here

Mid-infrared observations of O-type stars: spectral morphology

317   0   0.0 ( 0 )
 Added by Wagner Marcolino
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present mid-infrared observations for a sample of 16 O-type stars. The data were acquired with the NASA Spitzer Space Telescope, using the IRS instrument at moderate resolution (R $sim$ 600), covering the range $sim 10-37$ microns. Our sample includes early, mid and late O supergiants and dwarfs. We explore for the first time their mid-IR spectral morphology in a quantitative way. We use NLTE expanding atmosphere models to help with line identifications, analyze profile contributions and line-formation regions. The O supergiants present a rich emission line spectra. The most intense features are from hydrogen - $6alpha$, 7$alpha$, and $8alpha$ - which have non-negligible contributions of HeI or HeII lines, depending on the spectral type. The spectrum of early O supergiants is a composite of HI and HeII lines, HeI lines being absent. On the other hand, late O supergiants present features composed mainly by HI and HeI lines. All emission lines are formed throughout the stellar wind. We found that O dwarfs exhibit a featureless mid-IR spectrum. Two stars of our sample exhibit very similar mid-IR features, despite having a very different optical spectral classification. The analysis of O-type stars based on mid-IR spectra alone to infer spectral classes or to estimate physical parameters may thus be prone to substantial errors. Our results may therefore inform spectroscopic observations of massive stars located in heavily obscured regions and help establish an initial framework for observations of massive stars using the Mid-Infrared Instrument on the James Webb Space Telescope.



rate research

Read More

Mid-infrared photometry of R Coronae Borealis stars obtained from various satellites from IRAS to WISE has been utilized in studying the variations of the circumstellar dusts contributions to the spectral energy distribution of these stars. The variation of the fractional coverage (R) of dust clouds and their blackbody temperatures (T$_d$) have been used in trying to understand the dust cloud evolution over the three decades spanned by the satellite observations. In particular, it is shown that a prediction R $ propto T_d^4$ developed in this paper is satisfied, especially by those stars for which a single collection of cloud dominates the IR fluxes. Correlations of R with photospheric abundance and luminosity of the stars are explored.
Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and interpreting variability on a decadal timescale, here we present a mid-infrared spectral atlas containing observations of 68 low- and intermediate mass young stellar objects. The atlas consists of 2.5-11.6 um low-resolution spectra obtained with the ISOPHOT-S instrument on-board the Infrared Space Observatory (ISO) between 1996 and 1998, as well as 5.2-14.5 um low-resolution spectra obtained with the IRS instrument on-board the Spitzer Space Telescope between 2004 and 2007. The observations were retrieved from the ISO and Spitzer archives and were post-processed interactively by our own routines. For those 47 objects where multi-epoch spectra were available, we analyze mid-infrared spectral variability on annual and/or decadal timescales. We identify 37 variable candidate sources. Many stars show wavelength-independent flux changes, possibly due to variable accretion rate. In several systems, all exhibiting 10 um silicate emission, the variability of the 6-8 um continuum and the silicate feature exhibit different amplitudes. A possible explanation is variable shadowing of the silicate emitting region by an inner disk structure of changing height or extra silicate emission from dust clouds in the disk atmosphere. Our results suggest that mid-infrared variability, in particular the wavelength-dependent changes, are more ubiquitous than was known before. Interpreting this variability is a new possibility to explore the structure of the disk and its dynamical processes.
Post-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the Planetary Nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of Post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of Post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the Proto-Planetary Nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology.The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae.
We present spectra obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 um increases for both later optical spectral classes and redder (B-V)_0 colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on neither the assumption that molecular band strengths in the infrared can be predicted accurately from optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 um.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا