No Arabic abstract
Post-AGB stars are key objects for the study of the dramatic morphological changes of low- to intermediate-mass stars on their evolution from the Asymptotic Giant Branch (AGB) towards the Planetary Nebula stage. There is growing evidences that binary interaction processes may very well have a determining role in the shaping process of many objects, but so far direct evidence is still weak. We aim at a systematic study of the dust distribution around a large sample of Post-AGB stars as a probe of the symmetry breaking in the nebulae around these systems. We used imaging in the mid-infrared to study the inner part of these evolved stars to probe direct emission from dusty structures in the core of Post-AGB stars in order to better understand their shaping mechanisms. We imaged a sample of 93 evolved stars and nebulae in the mid-infrared using VISIR/VLT, T-Recs/Gemini South and Michelle/Gemini North. We found that all the the Proto-Planetary Nebulae we resolved show a clear departure from spherical symmetry. 59 out of the 93 observed targets appear to be non resolved. The resolved targets can be divided in two categories. The nebulae with a dense central core, that are either bipolar and multipolar. The nebulae with no central core have an elliptical morphology.The dense central torus observed likely host binary systems which triggered fast outflows that shaped the nebulae.
There is ample evidence for strong magnetic fields in the envelopes of (Post-)Asymptotic Giant Branch (AGB) stars as well as supergiant stars. The origin and role of these fields are still unclear. This paper updates the current status of magnetic field observations around AGB, post-AGB stars and describes their possible role during these stages of evolution. The discovery of magnetically aligned dust around a supergiant star is also highlighted. In our search for the origin of the magnetic fields, recent observations show the signatures of possible magnetic activity and rotation, indicating that the magnetic fields might be intrinsic to the AGB stars.
Binary post-asymptotic giant branch (post-AGB) stars are thought to be the products of a strong but poorly-understood interaction during the AGB phase. The aim of this contribution is to update the orbital elements of a sample of galactic post-AGB binaries observed in a long-term radial-velocity monitoring campaign. Radial velocities are computed from high signal-to-noise spectra by use of a cross-correlation method. The radial-velocity curves are fitted by using both a least-squares algorithm and a Nelder-Mead simplex algorithm. We use a Monte Carlo method to compute uncertainties on the orbital elements. The resulting mass functions are used to derive a companion mass distribution by optimising the predicted to the observed cumulative mass-function distributions, after correcting for observational bias. As a result, we derive and update orbital elements for 33 galactic post-AGB binaries, among which 3 are new orbits. The orbital periods of the systems range from 100 to about 3000 days. Over 70 percent (23 out of 33) of our binaries have significant non-zero eccentricities ranging over all periods. Their orbits are non-circular despite the fact that the Roche-lobe radii are smaller than the maximum size of a typical AGB star and tidal circularisation should have been strong when the objects were on the AGB. We derive a distribution of companion masses that is peaked around 1.09 $M_odot$ with a standard deviation of 0.62 $M_odot$. The large spread in companion masses highlights the diversity of post-AGB binary systems. Furthermore, we find that only post-AGB stars with high effective temperatures (> 5500 K) in wide orbits are depleted in refractory elements, suggesting that re-accretion of material from a circumbinary disc is an ongoing process. It appears, however, that chemical depletion is inefficient for the closest orbits irrespective of the actual surface temperature.
We present ground-based mid-infrared imaging for 27 M-, S- and C-type Asymptotic Giant Branch (AGB) stars. The data are compared with those of the database available thanks to the IRAS, ISO, MSX and 2MASS catalogues. Our goal is to establish relations between the IR colors, the effective temperature $T_{eff}$, the luminosity $L$ and the mass loss rate $dot M$, for improving the effectiveness of AGB modelling. Bolometric (absolute) magnitudes are obtained through distance compilations, and by applying previously-derived bolometric corrections; the variability is also studied, using data accumulated since the IRAS epoch. The main results are: i) Values of $L$ and $dot M$ for C stars fit relations previously established by us, with Miras being on average more evolved and mass losing than Semiregulars. ii) Moderate IR excesses (as compared to evolutionary tracks) are found for S and M stars in our sample: they are confirmed to originate from the dusty circumstellar environment. iii) A larger reddening characterizes C-rich Miras and post-AGBs. In this case, part of the excess is due to AGB models overestimating $T_{eff}$ for C-stars, as a consequence of the lack of suitable molecular opacities. This has a large effect on the colors of C-rich sources and sometimes disentangling the photospheric and circumstellar contributions is difficult; better model atmospheres should be used in stellar evolutionary codes for C stars. iv) The presence of a long-term variability at mid-IR wavelengths seems to be limited to sources with maximum emission in the 8 -- 20 $mu$m region, usually Mira variables (1/3 of our sample). Most Semiregular and post-AGB stars studied here remained remarkably constant in mid-IR over the last twenty years.
Aim: We aim to study in detail the peculiar mineralogy and structure of the circumstellar environment of two binary post-AGB stars, EPLyr and HD52961. Both stars were selected from a larger sample of evolved disc sources observed with Spitzer and show unique solid-state and gas features in their infrared spectra. Moreover, they show a very small infrared excess in comparison with the other sample stars. Methods: The different dust and gas species are identified on the basis of high-resolution Spitzer-IRS spectra. We fit the full spectrum to constrain grain sizes and temperature distributions in the discs. This, combined with our broad-band spectral energy distribution and interferometric measurements, allows us to study the physical structure of the disc, using a self-consistent 2D radiative-transfer disc model. Results: We find that both stars have strong emission features due to CO_2 gas, dominated by ^{12}C^{16}O_2, but with clear ^{13}C^{16}O_2 and even ^{16}O^{12}C^{18}O isotopic signatures. Crystalline silicates are apparent in both sources but proved very hard to model. EP Lyr also shows evidence of mixed chemistry, with emission features of the rare class-C PAHs. Whether these PAHs reside in the oxygen-rich disc or in a carbon-rich outflow is still unclear. With the strongly processed silicates, the mixed chemistry and the low ^{12}C/^{13}C ratio, EP Lyr resembles some silicate J-type stars, although the depleted photosphere makes nucleosynthetic signatures difficult to probe. We find that the disc environment of both sources is, to a first approximation, well modelled with a passive disc, but additional physics such as grain settling, radial dust distributions, and an outflow component must be included to explain the details of the observed spectral energy distributions in both stars.
During the last years, many observational studies have revealed that binaries play an active role in the shaping of non spherical planetary nebulae. We review the different works that lead to the direct or indirect evidence for the presence of binary companions during the Asymptotic Giant Branch, proto-Planetary Nebula and Planetary Nebula phases. We also discuss how these binaries can influence the stellar evolution and possible future directions in the field.