Do you want to publish a course? Click here

Mid-Infrared Variations of R Coronae Borealis Stars

120   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mid-infrared photometry of R Coronae Borealis stars obtained from various satellites from IRAS to WISE has been utilized in studying the variations of the circumstellar dusts contributions to the spectral energy distribution of these stars. The variation of the fractional coverage (R) of dust clouds and their blackbody temperatures (T$_d$) have been used in trying to understand the dust cloud evolution over the three decades spanned by the satellite observations. In particular, it is shown that a prediction R $ propto T_d^4$ developed in this paper is satisfied, especially by those stars for which a single collection of cloud dominates the IR fluxes. Correlations of R with photospheric abundance and luminosity of the stars are explored.



rate research

Read More

131 - Geoffrey C. Clayton 2012
The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich, supergiants, best known for their spectacular declines in brightness at irregular intervals. Efforts to discover more RCB stars have more than doubled the number known in the last few years and they appear to be members of an old, bulge population. Two evolutionary scenarios have been suggested for producing an RCB star, a double degenerate merger of two white dwarfs, or a final helium shell flash in a planetary nebula central star. The evidence pointing toward one or the other is somewhat contradictory, but the discovery that RCB stars have large amounts of 18O has tilted the scales towards the merger scenario. If the RCB stars are the product of white dwarf mergers, this would be a very exciting result since RCB stars would then be low-mass analogs of type Ia supernovae. The predicted number of RCB stars in the Galaxy is consistent with the predicted number of He/CO WD mergers. But, so far, only about 65 of the predicted 5000 RCB stars in the Galaxy have been discovered. The mystery has yet to be solved.
The R Coronae Borealis (RCB) stars are rare hydrogen--deficient, carbon--rich supergiants. They undergo extreme, irregular declines in brightness of many magnitudes due to the formation of thick clouds of carbon dust. It is thought that RCB stars result from the mergers of CO/He white dwarf (WD) binaries. We constructed post--merger spherically asymmetric models computed with the MESA code, and then followed the evolution into the region of the HR diagram where the RCB stars are located. We also investigated nucleosynthesis in the dynamically accreting material of CO/He WD mergers which may provide a suitable environment for significant production of 18O and the very low 16O/18O values observed. We have also discovered that the N abundance depends sensitively on the peak temperature in the He--burning shell. Our MESA modeling consists of engineering the star by adding He--WD material to an initial CO--WD model, and then following the post--merger evolution using a nuclear--reaction network to match the observed RCB abundances as it expands and cools to become an RCB star. These new models are more physical because they include rotation, mixing, mass-loss, and nucleosynthesis within MESA. We follow the later evolution beyond the RCB phase to determine the stars likely lifetimes. The relative numbers of known RCB and Extreme Helium (EHe) stars correspond well to the lifetimes predicted from the MESA models. In addition, most of computed abundances agree very well with the observed range of abundances for the RCB class.
109 - Gajendra Pandey , 2021
Surface abundances of 14 (11 majority class and 3 minority class) R Coronae Borealis stars (RCBs) along with the final flash object, V4334 Sgr (Sakurais object) are revised based on their carbon abundances measured from the observed C2 bands; note that the earlier reported abundances were derived using an assumed carbon abundance due to the well known ``carbon problem. The hot RCB MV Sgr is not subject to a carbon problem; it is remarkable to note that MV Sgrs carbon abundance lies in the range that is measured for the majority and minority class RCBs. The revised iron abundances for the RCBs are in the range log E(Fe)=3.8 to log E(Fe)=5.8 with the minority class RCB V854 Cen at lower end and the majority class RCB R CrB at the higher end of this range. Indications are that the revised RCBs metallicity range is roughly consistent with the metal poor population contained within the bulge. The revised abundances of RCBs are then compared with extreme helium stars (EHes), the hotter relatives of RCBs. Clear differences are observed between RCBs and EHes in their metallicity distribution, carbon abundances, and the abundance trends observed for the key elements. These abundances are further discussed in the light of their formation scenarios.
103 - Anirban Bhowmick 2018
In this paper we present for the first time, the study of low resolution $H$- and $K$- band spectra of 7 DY,Per type and suspects stars as well as DY,Persei itself. We also observed $H$- and $K$- band spectra of 3 R Coronae Borealis (RCB) stars, 1 hydrogen-deficient carbon (HdC) star and 14 cool carbon stars including normal giants as comparisons. High $^{12}$C/$^{13}$C and low $^{16}$O/$^{18}$O ratios are characteristic features of majority RCBs and HdCs. We have estimated $^{16}$O/$^{18}$O ratios of the programme stars from the relative strengths of the $^{12}$C$^{16}$O and $^{12}$C$^{18}$O molecular bands observed in $K$- band. Our preliminary analysis suggest that a quartet of the DY,Per suspects along with DY,Persei itself seems to show isotopic ratio strength consistent with the ones of RCB/HdC stars whereas two of them do not show significant $^{13}$C and $^{18}$O in their atmospheres. Our analysis provides further indications that DY,Per type stars could be related to RCB/HdC class of stars.
An R Coronae Borealis (RCB) star is a rare type of supergiant star that is increasingly thought to be the evolved merger product of two white dwarfs. Recently, many of them have been found distributed in a thin disk structure embedded inside the Galactic Bulge. This unexpected high density can give us more insight into the nature and age of RCB stars. We applied and tested successfully a new technique to find RCB stars based on the particular infrared emission. We demonstrated that RCB stars can now be found without the need of a light curve analysis, and therefore outside optically monitored fields. The selection of RCB candidates was based on their near-infrared excess and on particular mid-infrared emission of RCB shells, using photometric data from the 2MASS and Spitzer/GLIMPSE surveys. The OGLE light curves of all RCB candidates were then inspected visually and the ones presenting large and fast declines were followed-up spectroscopically . We discovered two new R Coronae Borealis stars, but also propose four new candidates. We stress that all of the 7 known RCB stars located in both Spitzer/GLIMPSE and OGLE-III fields were re-discovered, which indicates the high efficiency of our analysis. The proposed new technique to find RCB stars has been successful. It can now be extented to larger area, specially where the instellar extinction is too high to have been monitored by microlensing surveys, i.e the inner part of the Galactic Bulge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا