Do you want to publish a course? Click here

Spectral Calibration in the Mid-Infrared: Challenges and Solutions

121   0   0.0 ( 0 )
 Added by G. C. Sloan
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present spectra obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope of 33 K giants and 20 A dwarfs to assess their suitability as spectrophotometric standard stars. The K giants confirm previous findings that the strength of the SiO absorption band at 8 um increases for both later optical spectral classes and redder (B-V)_0 colors, but with considerable scatter. For K giants, the synthetic spectra underpredict the strengths of the molecular bands from SiO and OH. For these reasons, the assumed true spectra for K giants should be based on neither the assumption that molecular band strengths in the infrared can be predicted accurately from optical spectral class or color nor synthetric spectra. The OH bands in K giants grow stronger with cooler stellar temperatures, and they are stronger than predicted by synthetic spectra. As a group, A dwarfs are better behaved and more predictable than the K giants, but they are more likely to show red excesses from debris disks. No suitable A dwarfs were located in parts of the sky continuously observable from Spitzer, and with previous means of estimating the true spectra of K giants ruled out, it was necessary to use models of A dwarfs to calibrate spectra of K giants from observed spectral ratios of the two groups and then use the calibrated K giants as standards for the full database of infrared spectra from Spitzer. We also describe a lingering artifact that affects the spectra of faint blue sources at 24 um.



rate research

Read More

Optical and near-infrared variability is a well-known property of young stellar objects. However, a growing number of recent studies claim that a considerable fraction of them also exhibit mid-infrared flux changes. With the aim of studying and interpreting variability on a decadal timescale, here we present a mid-infrared spectral atlas containing observations of 68 low- and intermediate mass young stellar objects. The atlas consists of 2.5-11.6 um low-resolution spectra obtained with the ISOPHOT-S instrument on-board the Infrared Space Observatory (ISO) between 1996 and 1998, as well as 5.2-14.5 um low-resolution spectra obtained with the IRS instrument on-board the Spitzer Space Telescope between 2004 and 2007. The observations were retrieved from the ISO and Spitzer archives and were post-processed interactively by our own routines. For those 47 objects where multi-epoch spectra were available, we analyze mid-infrared spectral variability on annual and/or decadal timescales. We identify 37 variable candidate sources. Many stars show wavelength-independent flux changes, possibly due to variable accretion rate. In several systems, all exhibiting 10 um silicate emission, the variability of the 6-8 um continuum and the silicate feature exhibit different amplitudes. A possible explanation is variable shadowing of the silicate emitting region by an inner disk structure of changing height or extra silicate emission from dust clouds in the disk atmosphere. Our results suggest that mid-infrared variability, in particular the wavelength-dependent changes, are more ubiquitous than was known before. Interpreting this variability is a new possibility to explore the structure of the disk and its dynamical processes.
We present mid-infrared observations for a sample of 16 O-type stars. The data were acquired with the NASA Spitzer Space Telescope, using the IRS instrument at moderate resolution (R $sim$ 600), covering the range $sim 10-37$ microns. Our sample includes early, mid and late O supergiants and dwarfs. We explore for the first time their mid-IR spectral morphology in a quantitative way. We use NLTE expanding atmosphere models to help with line identifications, analyze profile contributions and line-formation regions. The O supergiants present a rich emission line spectra. The most intense features are from hydrogen - $6alpha$, 7$alpha$, and $8alpha$ - which have non-negligible contributions of HeI or HeII lines, depending on the spectral type. The spectrum of early O supergiants is a composite of HI and HeII lines, HeI lines being absent. On the other hand, late O supergiants present features composed mainly by HI and HeI lines. All emission lines are formed throughout the stellar wind. We found that O dwarfs exhibit a featureless mid-IR spectrum. Two stars of our sample exhibit very similar mid-IR features, despite having a very different optical spectral classification. The analysis of O-type stars based on mid-IR spectra alone to infer spectral classes or to estimate physical parameters may thus be prone to substantial errors. Our results may therefore inform spectroscopic observations of massive stars located in heavily obscured regions and help establish an initial framework for observations of massive stars using the Mid-Infrared Instrument on the James Webb Space Telescope.
161 - Mark Lacy 2012
We present preliminary results on fitting of SEDs to 142 z>1 quasars selected in the mid-infrared. Our quasar selection finds objects ranging in extinction from highly obscured, type-2 quasars, through more lightly reddened type-1 quasars and normal type-1s. We find a weak tendency for the objects with the highest far-infrared emission to be obscured quasars, but no bulk systematic offset between the far-infrared properties of dusty and normal quasars as might be expected in the most naive evolutionary schemes. The hosts of the type-2 quasars have stellar masses comparable to those of radio galaxies at similar redshifts. Many of the type-1s, and possibly one of the type-2s require a very hot dust component in addition to the normal torus emission.
259 - D. Farrah 2010
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with the Spitzer space telescope. The spectra span a range of shapes, from hot dust dominated AGN with silicate emission at 9.7 microns, to moderately obscured starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen in any QSO at any redshift, implying that the starburst dominates the mid-IR emission with an associated star formation rate of order 2700 solar masses per year. With the caveats that our sample is small and not robustly selected, we combine our mid-IR spectral diagnostics with previous observations to propose that FeLoBAL QSOs are at least largely comprised of systems in which (a) a merger driven starburst is ending, (b) a luminous AGN is in the last stages of burning through its surrounding dust, and (c) which we may be viewing over a restricted line of sight range.
191 - D. Calzetti 2007
With the goal of investigating the degree to which the mid-infrared emission traces the star formation rate (SFR), we analyze Spitzer 8 um and 24 um data of star-forming regions in a sample of 33 nearby galaxies with available HST/NICMOS images in the Paschen-alpha (1.8756 um) emission line. The galaxies are drawn from the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample, and cover a range of morphologies and a factor ~10 in oxygen abundance. Published data on local low-metallicity starburst galaxies and Luminous Infrared Galaxies are also included in the analysis. Both the stellar-continuum-subtracted 8 um emission and the 24 um emission correlate with the extinction-corrected Pa-alpha line emission, although neither relationship is linear. Simple models of stellar populations and dust extinction and emission are able to reproduce the observed non-linear trend of the 24 um emission versus number of ionizing photons, including the modest deficiency of 24 um emission in the low metallicity regions, which results from a combination of decreasing dust opacity and dust temperature at low luminosities. Conversely, the trend of the 8 um emission as a function of the number of ionizing photons is not well reproduced by the same models. The 8 um emission is contributed, in larger measure than the 24 um emission, by dust heated by non-ionizing stellar populations, in agreement with previous findings. Two SFR calibrations, one using the 24 um emission and the other using a combination of the 24 um and H-alpha luminosities (Kennicutt et al. 2007), are presented. No calibration is presented for the 8 um emission, because of its significant dependence on both metallicity and environment. The calibrations presented here should be directly applicable to systems dominated by on-going star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا