Do you want to publish a course? Click here

Banach Algebras Associated to Metric Operator Fields

127   0   0.0 ( 0 )
 Added by Maysam Maysami Sadr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by noncommutative geometry and quantum physics, the concept of `metric operator field is introduced. Roughly speaking, a metric operator field is a vector field on a set with values in self tensor product of a bundle of C*-algebras, satisfying properties similar to an ordinary metric (distance function). It is proved that to any such object there naturally correspond a Banach *-algebra that we call Lipschitz algebra, a class of probabilistic metrics, and (under some conditions) a (nontrivial) continuous field of C*-algebras in the sense of Dixmier. It is proved that for metric operator fields with values in von Neumann algebras the associated Lipschitz algebras are dual Banach spaces, and under some conditions, they are not amenable Banach algebras. Some examples and constructions are considered. We also discuss very briefly a possible application to quantum gravity.



rate research

Read More

335 - Stephen C. Power 2007
We define nonselfadjoint operator algebras with generators $L_{e_1},..., L_{e_n}, L_{f_1},...,L_{f_m}$ subject to the unitary commutation relations of the form [ L_{e_i}L_{f_j} = sum_{k,l} u_{i,j,k,l} L_{f_l}L_{e_k}] where $u= (u_{i,j,k,l})$ is an $n m times nm$ unitary matrix. These algebras, which generalise the analytic Toeplitz algebras of rank 2 graphs with a single vertex, are classified up to isometric isomorphism in terms of the matrix $u$.
To a large class of graphs of groups we associate a C*-algebra universal for generators and relations. We show that this C*-algebra is stably isomorphic to the crossed product induced from the action of the fundamental group of the graph of groups on the boundary of its Bass-Serre tree. We characterise when this action is minimal, and find a sufficient condition under which it is locally contractive. In the case of generalised Baumslag-Solitar graphs of groups (graphs of groups in which every group is infinite cyclic) we also characterise topological freeness of this action. We are then able to establish a dichotomy for simple C*-algebras associated to generalised Baumslag-Solitar graphs of groups: they are either a Kirchberg algebra, or a stable Bunce-Deddens algebra.
179 - Shuzhou Wang , Zhenhua Wang 2020
In this paper, the notion of operator means in the setting of JB-algebras is introduced and their properties are studied. Many identities and inequalities are established, most of them have origins from operators on Hilbert space but they have different forms and connotations, and their proofs require techniques in JB-algebras.
We introduce P-graphs, which are generalisations of directed graphs in which paths have a degree in a semigroup P rather than a length in N. We focus on semigroups P arising as part of a quasi-lattice ordered group (G,P) in the sense of Nica, and on P-graphs which are finitely aligned in the sense of Raeburn and Sims. We show that each finitely aligned P-graph admits a C*-algebra C*_{min}(Lambda) which is co-universal for partial-isometric representations of Lambda which admit a coaction of G compatible with the P-valued length function. We also characterise when a homomorphism induced by the co-universal property is injective. Our results combined with those of Spielberg show that every Kirchberg algebra is Morita equivalent C*_{min}(Lambda) for some (N^2 * N)-graph Lambda.
Let $G$ be a Hausdorff, etale groupoid that is minimal and topologically principal. We show that $C^*_r(G)$ is purely infinite simple if and only if all the nonzero positive elements of $C_0(G^0)$ are infinite in $C_r^*(G)$. If $G$ is a Hausdorff, ample groupoid, then we show that $C^*_r(G)$ is purely infinite simple if and only if every nonzero projection in $C_0(G^0)$ is infinite in $C^*_r(G)$. We then show how this result applies to $k$-graph $C^*$-algebras. Finally, we investigate strongly purely infinite groupoid $C^*$-algebras.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا