Do you want to publish a course? Click here

Discrete-to-continuous transition in quantum phase estimation

103   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the problem of quantum phase estimation where the set of allowed phases forms a discrete $N$ element subset of the whole $[0,2pi]$ interval, $varphi_n = 2pi n/N$, $n=0,dots N-1$ and study the discrete-to-continuous transition $Nrightarrowinfty$ for various cost functions as well as the mutual information. We also analyze the relation between the problems of phase discrimination and estimation by considering a step cost functions of a given width $sigma$ around the true estimated value. We show that in general a direct application of the theory of covariant measurements for a discrete subgroup of the $U(1)$ group leads to suboptimal strategies due to an implicit requirement of estimating only the phases that appear in the prior distribution. We develop the theory of sub-covariant measurements to remedy this situation and demonstrate truly optimal estimation strategies when performing transition from a discrete to the continuous phase estimation regime.



rate research

Read More

We introduce a new statistical and variational approach to the phase estimation algorithm (PEA). Unlike the traditional and iterative PEAs which return only an eigenphase estimate, the proposed method can determine any unknown eigenstate-eigenphase pair from a given unitary matrix utilizing a simplified version of the hardware intended for the Iterative PEA (IPEA). This is achieved by treating the probabilistic output of an IPEA-like circuit as an eigenstate-eigenphase proximity metric, using this metric to estimate the proximity of the input state and input phase to the nearest eigenstate-eigenphase pair and approaching this pair via a variational process on the input state and phase. This method may search over the entire computational space, or can efficiently search for eigenphases (eigenstates) within some specified range (directions), allowing those with some prior knowledge of their system to search for particular solutions. We show the simulation results of the method with the Qiskit package on the IBM Q platform and on a local computer.
We apply the formalism of quantum estimation theory to extract information about potential collapse mechanisms of the continuous spontaneous localisation (CSL) form. In order to estimate the strength with which the field responsible for the CSL mechanism couples to massive systems, we consider the optomechanical interaction between a mechanical resonator and a cavity field. Our estimation strategy passes through the probing of either the state of the oscillator or that of the electromagnetic field that drives its motion. In particular, we concentrate on all-optical measurements, such as homodyne and heterodyne measurements. We also compare the performances of such strategies with those of a spin-assisted optomechanical system, where the estimation of the CSL parameter is performed through time-gated spin-like measurements.
By using a systematic optimization approach we determine quantum states of light with definite photon number leading to the best possible precision in optical two mode interferometry. Our treatment takes into account the experimentally relevant situation of photon losses. Our results thus reveal the benchmark for precision in optical interferometry. Although this boundary is generally worse than the Heisenberg limit, we show that the obtained precision beats the standard quantum limit thus leading to a significant improvement compared to classical interferometers. We furthermore discuss alternative states and strategies to the optimized states which are easier to generate at the cost of only slightly lower precision.
Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling we find that classical dynamics emerges only when the position and spin actions are both large compared to $hbar$. These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin 1/2 particle. When the conditions for classicallity are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value.
We study the possibility of realizing perfect quantum state transfer in mesoscopic devices. We discuss the case of the Fano-Anderson model extended to two impurities. For a channel with an infinite number of degrees of freedom, we obtain coherent behavior in the case of strong coupling or in weak coupling off-resonance. For a finite number of degrees of freedom, coherent behavior is associated to weak coupling and resonance conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا