Do you want to publish a course? Click here

Mesoscopic continuous and discrete channels for quantum information transfer

98   0   0.0 ( 0 )
 Added by Simone Paganelli
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the possibility of realizing perfect quantum state transfer in mesoscopic devices. We discuss the case of the Fano-Anderson model extended to two impurities. For a channel with an infinite number of degrees of freedom, we obtain coherent behavior in the case of strong coupling or in weak coupling off-resonance. For a finite number of degrees of freedom, coherent behavior is associated to weak coupling and resonance conditions.



rate research

Read More

The optimally designed control of quantum systems is playing an increasingly important role to engineer novel and more efficient quantum technologies. Here, in the scenario represented by controlling an arbitrary quantum system via the interaction with an another optimally initialized auxiliary quantum system, we show that the quantum channel capacity sets the scaling behaviour of the optimal control error. Specifically, we prove that the minimum control error is ensured by maximizing the quantum capacity of the channel mapping the initial control state into the target state of the controlled system, i.e., optimizing the quantum information flow from the controller to the system to be controlled. Analytical results, supported by numerical evidences, are provided when the systems and the controller are either qubits or single Bosonic modes and can be applied to a very large class of platforms for controllable quantum devices.
Transmission and storage of quantum information are the fundamental building blocks for large-scale quantum communication networks. Reliable certification of quantum communication channels and quantum memories requires the estimation of their capacities to transmit and store quantum information. This problem is challenging for continuous variable systems, such as the radiation field, for which a complete characterization of processes via quantum tomography is practically unfeasible. Here we develop protocols for detecting lower bounds to the quantum capacity of continuous variable communication channels and memories. Our protocols work in the general scenario where the devices are used a finite number of times, can exhibit correlations across multiple uses, and can be under the control of an adversary. Our protocols are experimentally friendly and can be implemented using Gaussian input states (single-mode squeezed or coherent) and Gaussian quantum measurements (homodyne or heterodyne). These schemes can be used to certify the transmission and storage of continuous variable quantum information, and to detect communication paths in quantum networks.
Quantum information protocols are inevitably affected by decoherence which is associated with the leakage of quantum information into an environment. In this paper we address the possibility of recovering the quantum information from an environmental measurement. We investigate continuous variable quantum information, and we propose a simple environmental measurement that under certain circumstances fully restores the quantum information of the signal state although the state is not reconstructed with unit fidelity. We implement the protocol for which information is encoded into conjugate quadratures of coherent states of light and the noise added under the decoherence process is of Gaussian nature. The correction protocol is tested using both a deterministic as well as a probabilistic strategy. The potential use of the protocol in a continuous variable quantum key distribution scheme as a means to combat excess noise is also investigated.
We describe a technique for manipulating quantum information stored in collective states of mesoscopic ensembles. Quantum processing is accomplished by optical excitation into states with strong dipole-dipole interactions. The resulting ``dipole blockade can be used to inhibit transitions into all but singly excited collective states. This can be employed for a controlled generation of collective atomic spin states as well as non-classical photonic states and for scalable quantum logic gates. An example involving a cold Rydberg gas is analyzed.
We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as an efficient scheme for their experimental generation. This novel class of tunable entangled resources is defined by a general ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell states and even more general non-Gaussian resources that can be optimized according to the specific quantum technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations and photon detections performed on a pair of uncorrelated two--mode Gaussian squeezed states. The desired non-Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experimental parameters can be exploited to generate different states and to optimize the performance in implementing a given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation of an unknown coherent state, we show that the resources associated to the optimized parameters outperform, in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا