No Arabic abstract
Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling we find that classical dynamics emerges only when the position and spin actions are both large compared to $hbar$. These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin 1/2 particle. When the conditions for classicallity are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value.
We study how decoherence rules the quantum-classical transition of the Kicked Harmonic Oscillator (KHO). When the amplitude of the kick is changed the system presents a classical dynamics that range from regular to a strong chaotic behavior. We show that for regular and mixed classical dynamics, and in the presence of noise, the distance between the classical and the quantum phase space distributions is proportional to a single parameter $chiequiv Khbar_{rm eff}^2/4D^{3/2}$ which relates the effective Planck constant $hbar_{rm eff}$, the kick amplitude $K$ and the diffusion constant $D$. This is valid when $chi < 1$, a case that is always attainable in the semiclassical regime independently of the value of the strength of noise given by $D$. Our results extend a recent study performed in the chaotic regime.
The connection between coarse-graining of measurement and emergence of classicality has been investigated for some time, if not well understood. Recently in (PRL $textbf{112}$, 010402, (2014)) it was pointed out that coarse-graining measurements can lead to non-violation of Bell-type inequalities by a state which would violate it under sharp measurements. We study here the effects of coarse-grained measurements on bipartite cat states. We show that while it is true that coarse-graining does indeed lead to non-violation of a Bell-type inequality, this is not reflected at the state level. Under such measurements the post-measurement states can be non-classical (in the quantum optical sense) and in certain cases coarse-graning can lead to an increase in this non-classicality with respect to the coarse-graining parameter. While there is no universal way to quantify non-classicality, we do so using well understood notions in quantum optics such as the negativity of the Wigner function and the singular nature of the Gluaber-Sudharshan P distribution.
Quantum measurement remains a puzzle through its stormy history from the birth of quantum mechanics to state-of-the-art quantum technologies. Two complementary measurement schemes have been widely investigated in a variety of quantum systems: von Neumanns projective strong measurement and Aharonovs weak measurement. Here, we report the observation of a weak-to-strong measurement transition in a single trapped $40Ca^+$ ion system. The transition is realized by tuning the interaction strength between the ions internal electronic state and its vibrational motion, which play the roles of the measured system and the measuring pointer, respectively. By pre- and post-selecting the internal state, a pointer state composed of two of the ions motional wavepackets is obtained, and its central-position shift, which corresponds to the measurement outcome, demonstrates the transition from the weak-value asymptotes to the expected-value asymptotes. Quantitatively, the weak-to-strong measurement transition is characterized by a universal transition factor $e^{-Gamma^2}$, where $Gamma$ is a dimensionless parameter related to the system-apparatus coupling. This transition, which continuously connects weak measurements and strong measurements, may open new experimental possibilities to test quantum foundations and prompt us to re-examine and improve the measurement schemes of related quantum technologies.
We analyze the problem of estimating past quantum states of a monitored system from a mathematical perspective in order to ensure self-consistency with the principle of quantum non-demolition. Despite several claims of ``measuring noncommuting observables in the physics literature, we show that we are always measuring commuting processes. Our main interest is in the notion of quantum smoothing or retrodiction. In particular, we examine proposals to estimate the result of an external measurement made on an open quantum systems during a period where it is also undergoing continuous monitoring. A full analysis shows that the non-demolition principle is not actually violated, and so a well-posed as a statistical inference problem can be formulated. We extend the formalism to consider multiple independent external measurements made on the system over the course of a continual period of monitoring.
We study the dynamical complexity of an open quantum driven double-well oscillator, mapping its dependence on effective Plancks constant $hbar_{eff}equivbeta$ and coupling to the environment, $Gamma$. We study this using stochastic Schrodinger equations, semiclassical equations, and the classical limit equation. We show that (i) the dynamical complexity initially increases with effective Hilbert space size (as $beta$ decreases) such that the most quantum systems are the least dynamically complex. (ii) If the classical limit is chaotic, that is the most dynamically complex (iii) if the classical limit is regular, there is always a quantum system more dynamically complex than the classical system. There are several parameter regimes where the quantum system is chaotic even though the classical limit is not. While some of the quantum chaotic attractors are of the same family as the classical limiting attractors, we also find a quantum attractor with no classical counterpart. These phenomena occur in experimentally accessible regimes.