No Arabic abstract
Internal gravity waves play a primary role in geophysical fluids: they contribute significantly to mixing in the ocean and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We will discuss the reason for the ubiquity of wave beams in stratified fluids, related to the fact that they are solutions of the nonlinear governing equations. We will focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams. i) The Triadic Resonant Instability generating two secondary wave beams. ii) The streaming instability corresponding to the spontaneous generation of a mean flow.
In the paper taking the assumption of the slowness of the change of the parameters of the vertically stratified medium in the horizontal direction and in time, the evolution of the non-harmonic wave packages of the internal gravity waves has been analyzed. The concrete form of the wave packages can be expressed through some model functions and is defined by the local behavior of the dispersive curves of the separate modes near to the corresponding special points. The solution of this problem is possible with the help of the modified variant of the special-time ray method offered by the authors (the method of geometrical optics), the basic difference of which consists that the asymptotic representation of the solution may be found in the form the series of the non-integer degrees of some small parameter. At that the exponent depends on the concrete form of representation of this package. The obvious kind of the representation is determined from the principle of the localness and the asymptotic behavior of the solution in the stationary and the horizontally-homogeneous case. The phases of the wave packages are determined from the corresponding equations of the eikonal, which can be solved numerically on the characteristics (rays). Amplitudes of the wave packages are determined from the laws of conservation of the some invariants along the characteristics (rays).
We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at high vertical wavenumber. Such values of the transfer rates are inconsistent with conventional wisdom that regards the Garrett and Munk spectrum as an approximate stationary state and puts the self-consistency of a resonant kinetic equation at a serious risk. We explore possible reasons for and resolutions of this paradox. Inclusion of near-resonant interactions decreases the rate at which the spectrum evolves. This leads to improved self-consistency of the kinetic equation.
In this Letter we regard nonlinear gravity-capillary waves with parameter of nonlinearity being $varepsilon sim 0.1 div 0.25$. For this nonlinearity time scale separation does not occur and kinetic wave equation does not hold. An energy cascade in this case is built at the dynamic time scale (D-cascade) and is computed by the increment chain equation method first introduced in emph{Kartashova, emph{EPL} textbf{97} (2012), 30004.} We compute for the first time an analytical expression for the energy spectrum of nonlinear gravity-capillary waves as an explicit function depending on the ratio of surface tension to the gravity acceleration. It is shown that its two limits - pure capillary and pure gravity waves on a fluid surface - coincide with the previously obtained results. We also discuss relations of the model of D-cascade with a few known models used in the theory of nonlinear waves such as Zakharovs equation, resonance of the modes with nonlinear Stokes corrected frequencies and Benjamin-Feir index. These connections are crucial in the understanding and forecasting specifics of the energy transport in a variety of multi-component wave dynamics, from oceanography to optics, from plasma physics to acoustics.
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long term experiments in an idealised setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity $K_{T}$ and background potential energy $BPE$ are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al, Experiments in Fluids, 57(8), 132 (2016). The mixing efficiency $eta$ is assessed by relating the $BPE$ growth to the linearized $KE$ input. One finds a value of $Gamma=12-19%$ larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.
To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave fields generated by storm cells and oceanic near-inertial wave fields generated by surface storms, have been experimentally realized using an oscillating sphere or torus as the source. Here, we use a novel wave generator configuration capable of exciting axisymmetric internal wave fields of arbitrary radial form to generate axisymmetric internal wave modes. After establishing the theoretical background for axisymmetric mode propagation, taking into account lateral and vertical confinement, and also accounting for the effects of weak viscosity, we experimentally generate and study modes of different order. We characterize the efficiency of the wave generator through careful measurement of the wave amplitude based upon group velocity arguments. This established, we investigate the ability of vertical confinement to induce resonance, identifying a series of experimental resonant peaks that agree well with theoretical predictions. In the vicinity of resonance, the wave fields undergo a transition to non-linear behaviour that is initiated on the central axis of the domain and proceeds to erode the wave field throughout the domain.