Do you want to publish a course? Click here

Excitation and resonant enhancement of axisymmetric internal wave modes

81   0   0.0 ( 0 )
 Added by Philippe Odier
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave fields generated by storm cells and oceanic near-inertial wave fields generated by surface storms, have been experimentally realized using an oscillating sphere or torus as the source. Here, we use a novel wave generator configuration capable of exciting axisymmetric internal wave fields of arbitrary radial form to generate axisymmetric internal wave modes. After establishing the theoretical background for axisymmetric mode propagation, taking into account lateral and vertical confinement, and also accounting for the effects of weak viscosity, we experimentally generate and study modes of different order. We characterize the efficiency of the wave generator through careful measurement of the wave amplitude based upon group velocity arguments. This established, we investigate the ability of vertical confinement to induce resonance, identifying a series of experimental resonant peaks that agree well with theoretical predictions. In the vicinity of resonance, the wave fields undergo a transition to non-linear behaviour that is initiated on the central axis of the domain and proceeds to erode the wave field throughout the domain.



rate research

Read More

We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at high vertical wavenumber. Such values of the transfer rates are inconsistent with conventional wisdom that regards the Garrett and Munk spectrum as an approximate stationary state and puts the self-consistency of a resonant kinetic equation at a serious risk. We explore possible reasons for and resolutions of this paradox. Inclusion of near-resonant interactions decreases the rate at which the spectrum evolves. This leads to improved self-consistency of the kinetic equation.
In this paper, we present an experimental study of weakly non-linear interaction of axisymmetric internal gravity waves in a resonant cavity, supported by theoretical considerations. Contrary to plane waves in Cartesian coordinates, for which self-interacting terms are null in a linear stratifiation, the non-linear self-interaction of an internal wave mode in axisymmetric geometry is found to be efficient at producing super-harmonics, i.e. waves whose frequencies are integer multiples of the excitation frequency. Due to the range of frequencies tested in our experiments, the first harmonic frequency is below the cut-off imposed by the stratification so the lowest harmonic created can always propagate. The study shows that the super-harmonic wave field is a sum of standing waves satisfying both the dispersion relation for internal waves and the boundary conditions imposed by the cavity walls, while conserving the axisymmetry.
To date, the influence of non-linear stratifications and two layer stratifications on internal wave propagation has been studied for two-dimensional wave fields in a cartesian geometry. Here, we use a novel wave generator configuration to investigate transmission in non-linear stratifications of axisymmetric internal wave. Two configurations are studied, both theoretically and experimentally. In the case of a free incident wave, a transmission maximum is found in the vicinity of evanescent frequencies. In the case of a confined incident wave, resonant effects lead to enhanced transmission rates from an upper layer to layer below. We consider the oceanographic relevance of these results by applying them to an example oceanic stratification, finding that there can be real-world implications.
We consider interactions between surface and interfacial waves in the two layer system. Our approach is based on the Hamiltonian structure of the equations of motion, and includes the general procedure for diagonalization of the quadratic part of the Hamiltonian. Such diagonalization allows us to derive the interaction crossection between surface and interfacial waves and to derive the coupled kinetic equations describing spectral energy transfers in this system. Our kinetic equation allows resonant and near resonant interactions. We find that the energy transfers are dominated by the class III resonances of cite{Alam}. We apply our formalism to calculate the rate of growth for interfacial waves for different values of the wind velocity. Using our kinetic equation, we also consider the energy transfer from the wind generated surface waves to interfacial waves for the case when the spectrum of the surface waves is given by the JONSWAP spectrum and interfacial waves are initially absent. We find that such energy transfer can occur along a timescale of hours; there is a range of wind speeds for the most effective energy transfer at approximately the wind speed corresponding to white capping of the sea. Furthermore, interfacial waves oblique to the direction of the wind are also generated.
Internal gravity waves play a primary role in geophysical fluids: they contribute significantly to mixing in the ocean and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We will discuss the reason for the ubiquity of wave beams in stratified fluids, related to the fact that they are solutions of the nonlinear governing equations. We will focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams. i) The Triadic Resonant Instability generating two secondary wave beams. ii) The streaming instability corresponding to the spontaneous generation of a mean flow.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا