Do you want to publish a course? Click here

Mixing and formation of layers by internal wave forcing

101   0   0.0 ( 0 )
 Added by Thierry Dauxois
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long term experiments in an idealised setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity $K_{T}$ and background potential energy $BPE$ are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al, Experiments in Fluids, 57(8), 132 (2016). The mixing efficiency $eta$ is assessed by relating the $BPE$ growth to the linearized $KE$ input. One finds a value of $Gamma=12-19%$ larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.



rate research

Read More

Internal gravity waves play a primary role in geophysical fluids: they contribute significantly to mixing in the ocean and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We will discuss the reason for the ubiquity of wave beams in stratified fluids, related to the fact that they are solutions of the nonlinear governing equations. We will focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams. i) The Triadic Resonant Instability generating two secondary wave beams. ii) The streaming instability corresponding to the spontaneous generation of a mean flow.
We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at high vertical wavenumber. Such values of the transfer rates are inconsistent with conventional wisdom that regards the Garrett and Munk spectrum as an approximate stationary state and puts the self-consistency of a resonant kinetic equation at a serious risk. We explore possible reasons for and resolutions of this paradox. Inclusion of near-resonant interactions decreases the rate at which the spectrum evolves. This leads to improved self-consistency of the kinetic equation.
To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave fields generated by storm cells and oceanic near-inertial wave fields generated by surface storms, have been experimentally realized using an oscillating sphere or torus as the source. Here, we use a novel wave generator configuration capable of exciting axisymmetric internal wave fields of arbitrary radial form to generate axisymmetric internal wave modes. After establishing the theoretical background for axisymmetric mode propagation, taking into account lateral and vertical confinement, and also accounting for the effects of weak viscosity, we experimentally generate and study modes of different order. We characterize the efficiency of the wave generator through careful measurement of the wave amplitude based upon group velocity arguments. This established, we investigate the ability of vertical confinement to induce resonance, identifying a series of experimental resonant peaks that agree well with theoretical predictions. In the vicinity of resonance, the wave fields undergo a transition to non-linear behaviour that is initiated on the central axis of the domain and proceeds to erode the wave field throughout the domain.
The internal dynamics during the coalescence of a sessile droplet and a subsequently deposited impacting droplet, with either identical or distinct surface tension, is studied experimentally in the regime where surface tension is dominant. Two color high-speed cameras are used to capture the rapid internal flows and associated mixing from both side and bottom views simultaneously by adding an inert dye to the impacting droplet. Given sufficient lateral separation between droplets of identical surface tension, a robust surface jet is identified on top of the coalesced droplet. Image processing shows this jet is the result of a surface flow caused by the impact inertia and an immobile contact line. By introducing surface tension differences between the coalescing droplets, the surface jet can be either enhanced or suppressed via a Marangoni flow. The influence of the initial droplet configuration and relative surface tension on the long-term dynamics and mixing efficiency, plus the implications for emerging applications such as reactive inkjet printing, are also considered.
70 - Xi Xia , Chengming He , Dehai Yu 2017
This study employs an improved volume of fluid method and adaptive mesh refinement algorithm to numerically investigate the internal jet-like mixing upon the coalescence of two initially stationary droplets of unequal sizes. The emergence of the internal jet is attributed to the formation of a main vortex ring, as the jet-like structure shows a strong correlation with the main vortex ring inside the merged droplet. By tracking the evolution of the main vortex ring together with its circulation, we identified two mechanisms that are essential to the internal-jet formation: the vortex-ring growth and the vortex-ring detachment. Recognizing that the manifestation of the vortex-ring-induced jet physically relies on the competition between the convection and viscous dissipation of the vortex ring, we further developed and substantiated a vortex-ring-based Reynolds number criterion to interpret the occurrence of the internal jet at various Ohnesorge numbers and size ratios. For the merged droplet with apparent jet formation, the average mixing rate after jet formation increases monotonically with the vortex-ring Reynolds number, which therefore serves as an approximate measure of the jet strength. In this respect, stronger internal jet is responsible for enhanced mixing of the merged droplet.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا