No Arabic abstract
In the paper taking the assumption of the slowness of the change of the parameters of the vertically stratified medium in the horizontal direction and in time, the evolution of the non-harmonic wave packages of the internal gravity waves has been analyzed. The concrete form of the wave packages can be expressed through some model functions and is defined by the local behavior of the dispersive curves of the separate modes near to the corresponding special points. The solution of this problem is possible with the help of the modified variant of the special-time ray method offered by the authors (the method of geometrical optics), the basic difference of which consists that the asymptotic representation of the solution may be found in the form the series of the non-integer degrees of some small parameter. At that the exponent depends on the concrete form of representation of this package. The obvious kind of the representation is determined from the principle of the localness and the asymptotic behavior of the solution in the stationary and the horizontally-homogeneous case. The phases of the wave packages are determined from the corresponding equations of the eikonal, which can be solved numerically on the characteristics (rays). Amplitudes of the wave packages are determined from the laws of conservation of the some invariants along the characteristics (rays).
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynamical equations only wave modes are retained, and vortices and horizontally uniform vertical shears are excluded. Despite the simplifications, our simulations reproduce some key features of oceanic internal-wave spectra: accumulation of energy at near-inertial waves and realistic frequency and horizontal wavenumber dependencies. Furthermore, we provide evidence that formation of the energy spectra in the inertial subrange is dominated by scale-separated interactions with the near-inertial waves. These findings support oceanographers intuition that spectral energy density of internal waves is the result of predominantly wave-wave interactions.
Simulations of strongly stratified turbulence often exhibit coherent large-scale structures called vertically sheared horizontal flows (VSHFs). VSHFs emerge in both two-dimensional (2D) and three-dimensional (3D) stratified turbulence with similar vertical structure. The mechanism responsible for VSHF formation is not fully understood. In this work, the formation and equilibration of VSHFs in a 2D Boussinesq model of stratified turbulence is studied using statistical state dynamics (SSD). In SSD, equations of motion are expressed directly in the statistical variables of the turbulent state. Restriction to 2D turbulence makes available an analytically and computationally attractive implementation of SSD referred to as S3T, in which the SSD is expressed by coupling the equation for the horizontal mean structure with the equation for the ensemble mean perturbation covariance. This second order SSD produces accurate statistics, through second order, when compared with fully nonlinear simulations. In particular, S3T captures the spontaneous emergence of the VSHF and associated density layers seen in simulations of turbulence maintained by homogeneous large-scale stochastic excitation. An advantage of the S3T system is that the VSHF formation mechanism, which is wave-mean flow interaction between the emergent VSHF and the stochastically excited large-scale gravity waves, is analytically understood in the S3T system. Comparison with fully nonlinear simulations verifies that S3T solutions accurately predict the scale selection, dependence on stochastic excitation strength, and nonlinear equilibrium structure of the VSHF. These results facilitate relating VSHF theory and geophysical examples of turbulent jets such as the oceans equatorial deep jets.
We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at high vertical wavenumber. Such values of the transfer rates are inconsistent with conventional wisdom that regards the Garrett and Munk spectrum as an approximate stationary state and puts the self-consistency of a resonant kinetic equation at a serious risk. We explore possible reasons for and resolutions of this paradox. Inclusion of near-resonant interactions decreases the rate at which the spectrum evolves. This leads to improved self-consistency of the kinetic equation.
Internal gravity waves play a primary role in geophysical fluids: they contribute significantly to mixing in the ocean and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutions. However, these solutions are not a satisfactory description of most geophysical manifestations of internal gravity waves, and it is now recognized that internal wave beams with a confined profile are ubiquitous in the geophysical context. We will discuss the reason for the ubiquity of wave beams in stratified fluids, related to the fact that they are solutions of the nonlinear governing equations. We will focus more specifically on situations with a constant buoyancy frequency. Moreover, in light of recent experimental and analytical studies of internal gravity beams, it is timely to discuss the two main mechanisms of instability for those beams. i) The Triadic Resonant Instability generating two secondary wave beams. ii) The streaming instability corresponding to the spontaneous generation of a mean flow.
We analyze analytically and numerically the scale invariant stationary solution to the internal wave kinetic equation. Our analysis of the resonant energy transfers shows that the leading order contributions are given (i) by triads with extreme scale separation and (ii) by triads of waves that are quasi-colinear in the horizontal plane. The contributions from other types of triads is found to be subleading. We use the modified scale invariant limit of the Garrett and Munk spectrum of internal waves to calculate the magnitude of the energy flux towards high wave numbers in both the vertical and the horizontal directions. Our results compare favorably with the finescale parametrization of ocean mixing that was proposed in [Polzin et al. (1995)].