No Arabic abstract
Recently, collocation based radial basis function (RBF) partition of unity methods (PUM) for solving partial differential equations have been formulated and investigated numerically and theoretically. When combined with stable evaluation methods such as the RBF-QR method, high order convergence rates can be achieved and sustained under refinement. However, some numerical issues remain. The method is sensitive to the node layout, and condition numbers increase with the refinement level. Here, we propose a modified formulation based on least squares approximation. We show that the sensitivity to node layout is removed and that conditioning can be controlled through oversampling. We derive theoretical error estimates both for the collocation and least squares RBF-PUM. Numerical experiments are performed for the Poisson equation in two and three space dimensions for regular and irregular geometries. The convergence experiments confirm the theoretical estimates, and the least squares formulation is shown to be 5-10 times faster than the collocation formulation for the same accuracy.
Localized collocation methods based on radial basis functions (RBFs) for elliptic problems appear to be non-robust in the presence of Neumann boundary conditions. In this paper we overcome this issue by formulating the RBF-generated finite difference method in a discrete least-squares setting instead. This allows us to prove high-order convergence under node refinement and to numerically verify that the least-squares formulation is more accurate and robust than the collocation formulation. The implementation effort for the modified algorithm is comparable to that for the collocation method.
Consider using the right-preconditioned generalized minimal residual (AB-GMRES) method, which is an efficient method for solving underdetermined least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates of the AB-GMRES method may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the process becomes numerically stable and the system becomes consistent, rendering better convergence and a more accurate solution. Numerical experiments show that the proposed method is robust and efficient for solving inconsistent and ill-conditioned underdetermined least squares problems. The method can be considered as a way of making the GMRES stable for highly ill-conditioned inconsistent problems.
In this paper we consider two sources of enhancement for the meshfree Lagrangian particle method smoothed particle hydrodynamics (SPH) by improving the accuracy of the particle approximation. Namely, we will consider shape functions constructed using: moving least-squares approximation (MLS); radial basis functions (RBF). Using MLS approximation is appealing because polynomial consistency of the particle approximation can be enforced. RBFs further appeal as they allow one to dispense with the smoothing-length -- the parameter in the SPH method which governs the number of particles within the support of the shape function. Currently, only ad hoc methods for choosing the smoothing-length exist. We ensure that any enhancement retains the conservative and meshfree nature of SPH. In doing so, we derive a new set of variationally-consistent hydrodynamic equations. Finally, we demonstrate the performance of the new equations on the Sod shock tube problem.
We present a novel greedy Gauss-Seidel method for solving large linear least squares problem. This method improves the greedy randomized coordinate descent (GRCD) method proposed recently by Bai and Wu [Bai ZZ, and Wu WT. On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer Linear Algebra Appl. 2019;26(4):1--15], which in turn improves the popular randomized Gauss-Seidel method. Convergence analysis of the new method is provided. Numerical experiments show that, for the same accuracy, our method outperforms the GRCD method in term of the computing time.
Radial basis function generated finite difference (RBF-FD) methods for PDEs require a set of interpolation points which conform to the computational domain $Omega$. One of the requirements leading to approximation robustness is to place the interpolation points with a locally uniform distance around the boundary of $Omega$. However generating interpolation points with such properties is a cumbersome problem. Instead, the interpolation points can be extended over the boundary and as such completely decoupled from the shape of $Omega$. In this paper we present a modification to the least-squares RBF-FD method which allows the interpolation points to be placed in a box that encapsulates $Omega$. This way, the node placement over a complex domain in 2D and 3D is greatly simplified. Numerical experiments on solving an elliptic model PDE over complex 2D geometries show that our approach is robust. Furthermore it performs better in terms of the approximation error and the runtime vs. error compared with the classic RBF-FD methods. It is also possible to use our approach in 3D, which we indicate by providing convergence results of a solution over a thoracic diaphragm.