No Arabic abstract
The remoteness of the Sun and the harsh conditions prevailing in the solar corona have so far limited the observational data used in the study of solar physics to remote-sensing observations taken either from the ground or from space. In contrast, the `solar wind laboratory is directly measured in situ by a fleet of spacecraft measuring the properties of the plasma and magnetic fields at specific points in space. Since 2007, the solar-terrestrial relations observatory (STEREO) has been providing images of the solar wind that flows between the solar corona and spacecraft making in-situ measurements. This has allowed scientists to directly connect processes imaged near the Sun with the subsequent effects measured in the solar wind. This new capability prompted the development of a series of tools and techniques to track heliospheric structures through space. This article presents one of these tools, a web-based interface called the Propagation Tool that offers an integrated research environment to study the evolution of coronal and solar wind structures, such as Coronal Mass Ejections (CMEs), Corotating Interaction Regions (CIRs) and Solar Energetic Particles (SEPs). These structures can be propagated from the Sun outwards to or alternatively inwards from planets and spacecraft situated in the inner and outer heliosphere. In this paper, we present the global architecture of the tool, discuss some of the assumptions made to simulate the evolution of the structures and show how the tool connects to different databases.
On 2020 April 19 a coronal mass ejection (CME) was detected in situ by Solar Orbiter at a heliocentric distance of about 0.8 AU. The CME was later observed in situ on April 20th by the Wind and BepiColombo spacecraft whilst BepiColombo was located very close to Earth. This CME presents a good opportunity for a triple radial alignment study, as the spacecraft were separated by less than 5$^circ$ in longitude. The source of the CME, which was launched on April 15th, was an almost entirely isolated streamer blowout. STEREO-A observed the event remotely from -75.1$^circ$ longitude, which is an exceptionally well suited viewpoint for heliospheric imaging of an Earth directed CME. The configuration of the four spacecraft has provided an exceptionally clean link between remote imaging and in situ observations of the CME. We have used the in situ observations of the CME at Solar Orbiter, Wind, and BepiColombo, and the remote observations of the CME at STEREO-A in combination with flux rope models to determine the global shape of the CME and its evolution as it propagated through the inner heliosphere. A clear flattening of the CME cross-section has been observed by STEREO-A, and further confirmed by comparing profiles of the flux rope models to the in situ data, where the distorted flux rope cross-section qualitatively agrees most with in situ observations of the magnetic field at Solar Orbiter. Comparing in situ observations of the magnetic field between spacecraft, we find that the dependence of the maximum (mean) magnetic field strength decreases with heliocentric distance as $r^{-1.24 pm 0.50}$ ($r^{-1.12 pm 0.14}$), in disagreement with previous studies. Further assessment of the axial and poloidal magnetic field strength dependencies suggests that the expansion of the CME is likely neither self-similar nor cylindrically symmetric.
We determine the 3D geometry and deprojected mass of 29 well-observed coronal mass ejections (CMEs) and their interplanetary counterparts (ICMEs) using combined STEREO-SOHO white-light data. From the geometry parameters we calculate the volume of the CME for the magnetic ejecta (flux-rope type geometry) and sheath structure (shell-like geometry resembling the (I)CME frontal rim). Working under the assumption that the CME mass is roughly equally distributed within a specific volume, we expand the CME self-similarly and calculate the CME density for distances close to the Sun (15-30 Rs) and at 1AU. Specific trends are derived comparing calculated and in-situ measured proton densities at 1AU, though large uncertainties are revealed due to the unknown mass and geometry evolution: i) a moderate correlation for the magnetic structure having a mass that stays rather constant (~0.56-0.59), and ii) a weak correlation for the sheath density (~0.26) by assuming the sheath region is an extra mass - as expected for a mass pile-up process - that is in its amount comparable to the initial CME deprojected mass. High correlations are derived between in-situ measured sheath density and the solar wind density (~ -0.73) and solar wind speed (~0.56) as measured 24 hours ahead of the arrival of the disturbance. This gives additional confirmation that the sheath-plasma indeed stems from piled-up solar wind material. While the CME interplanetary propagation speed is not related to the sheath density, the size of the CME may play some role in how much material could be piled up.
In this study, we evaluate a coronal mass ejection (CME) arrival prediction tool that utilizes the wide-angle observations made by STEREOs heliospheric imagers (HI). The unsurpassable advantage of these imagers is the possibility to observe the evolution and propagation of a CME from close to the Sun out to 1 AU and beyond. We believe that by exploiting this capability, instead of relying on coronagraph observations only, it is possible to improve todays CME arrival time predictions. The ELlipse Evolution model based on HI observations (ELEvoHI) assumes that the CME frontal shape within the ecliptic plane is an ellipse, and allows the CME to adjust to the ambient solar wind speed, i.e. it is drag-based. ELEvoHI is used to perform ensemble simulations by varying the CME frontal shape within given boundary conditions that are consistent with the observations made by HI. In this work, we evaluate different set-ups of the model by performing hindcasts for 15 well-defined isolated CMEs that occurred when STEREO was near L4/5, between the end of 2008 and the beginning of 2011. In this way, we find a mean absolute error of between $6.2pm7.9$ h and $9.9pm13$ h depending on the model set-up used. ELEvoHI is specified for using data from future space weather missions carrying HIs located at L5 or L1. It can also be used with near real-time STEREO-A HI beacon data to provide CME arrival predictions during the next $sim7$ years when STEREO-A is observing the Sun-Earth space.
The Earths magnetosphere is formed as a consequence of interaction between the planets magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past forty years with the intention of understanding and forecasting solar behavior. One of these phenomena in particular, Earth-bound interplanetary coronal mass ejections (CMEs), can significantly disturb the Earths magnetosphere for a short time and cause geomagnetic storms. This publication presents a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic fields orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather (SW) forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the aforementioned CME properties. The missions secondary objective is to provide vital data to update scientific models. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and flux gate magnetometers, while coronagraphs execute remote measurements. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. They provide an information service that is in uninterrupted contact with the spacecraft, allowing for continuous SW monitoring. The data will be handled by a dedicated processing center before being forwarded to the SSA Space Weather Coordination Center who will manage the SW forecasting. The data processing center will additionally archive the data for the scientific community. The proposed concept mission allows for major advances in SW forecasting time and the scientific modelling of SW.
We examine 188 coronal mass ejections (CMEs) measured by the twin STEREO spacecraft during 2007-2016 to investigate the generic features of the CME sheath and the magnetic ejecta (ME) and dependencies of average physical parameters of the sheath on the ME. We classify the MEs into three categories, focusing on whether a ME drives both a shock and sheath, or only a sheath, or neither, near 1 AU. We also reevaluate our initial classification through an automated algorithm and visual inspection. We observe that even for leading edge speeds greater than 500 km/s, 1 out of 4 MEs do not drive shocks near 1 AU. MEs driving both shocks and sheaths are the fastest and propagate in high magnetosonic solar wind, whereas MEs driving only sheaths are the slowest and propagate in low magnetosonic solar wind. Our statistical and superposed epoch analyses indicate that all physical parameters are more enhanced in the sheath regions following shocks than in sheaths without shocks. However, differences within sheaths become statistically less significant for similar driving MEs. We also find that the radial thickness of ME-driven sheaths apparently has no clear linear correlation with the speed profile and associated Mach numbers of the driver.